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(ABSTRACT)

Reliable estimation of thermal properties is extremely important in the utilization
of new advanced materials, such as composite materials. The accuracy of these estimates
can be increased if the experiments are designed carefully. The objectives of this study
are to design optimal experiments to be used in the prediction of these thermal properties
and to then utilize these designs in the development of an estimation procedure to
determine the effective thermal properties (thermal conductivity and volumetric heat
capacity).

The experiments were optimized by choosing experimental parameters that
maximize the temperature derivatives with respect to all of the unknown thermal
properties. This procedure has the effect of minimizing the confidence intervals of the
resulting thermal property estimates. Both one-dimensional and two-dimensional
experimental designs were optimized. A heat flux boundary condition is required in both
analyses for the simultaneous estimation of the thermal properties. For the one-
dimensional experiment, the parameters optimized were the heating time of the applied
heat flux, the temperature sensor location, and the experimental time. In addition to these

parameters, the optimal location of the heat flux was also determined for the two-



dimensional experiments.

Utilizing the optimal one-dimensional experiment, the effective thermal
conductivity perpendicular to the fibers and the effective volumetric heat capacity were
then estimated for an IM7-Bismaleimide composite material. The estimation procedure
used is based on the minimization of a least squares function which incorporates both
calculated and measured temperatures and allows for the parameters to be estimated

simultaneously.
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Chapter 1

Introduction

A composite material is composed of two or more materials joined together to
form a new medium with properties superior to those of its individual constituents. There
are many potential advantages of these materials including higher strength-to-weight
ratios, better corrosion and wear resistance, and an increased service life over standard
metals. Because of these improved characteristics, the use of composite materials has
become quite extensive in the past twenty years, with the most widespread use being in
the aerospace and aeronautic industries for the design of aircraft structural components.
For example, composites are used in applications such as aircraft tail sections, wing skins,
and brake linings. The F-111 horizontal stabilizer was the first flight-worthy composite
component and in 1986, an all-composite airplane (the Voyager), set a world record in
nonstop flight around the world, revealing amazing toughness and rigidity against harsh
environmental conditions. However, the use of composites is not limited to the aerospace
industry. Composite technology has also gained the attention of the automotive, tooling

and sporting goods industries. Everything from car bodies and brake linings to tennis



rackets, golf clubs, bicycles, and fishing rods have been successfully manufactured from
composite materials.

Composites are typically classified according to their reinforcement forms; these
include particulate, fiber, laminar, flake, and filled/skeletal (Vinson and Sierakowski,
1987).  Fiber-reinforced composites can be further classified as continuous or
discontinuous. The major types of reinforcing fibers used in composites include glass,
carbon/graphite, organic, boron, silicon carbide and ceramic fibers, while the major matrix
resins consist of epoxy, polyimide, polyester, and thermoplastic, with epoxy resins being
the most versatile of the commercially available matrices. The composite materials
focused on in this study consist of continuous carbon fiber-epoxy matrix combinations.

With the increased use of composite materials in aerospace structures and other
applications, it is important that the properties of these advanced materials be known for
design purposes. Many studies on the mechanical properties of composites have been
conducted; however, limited analyses have been made regarding the thermal properties.
Knowledge of the thermal properties becomes important when the composite is subjected
to a non-isothermal environment which creates thermal loads on the component. These
thermal loads induce temperature variations within the structure, which in turn results in
the development of thermal stresses and possible structural failure. In order to accurately
predict these thermal stresses and prevent component damage, the temperature response
of the structure must first be known. However, to determine this response, the thermal
properties of the composite sample, which can be thermally or directionally dependent,

are required. The prediction of these thermal properties has provided the motivation for
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this study. This information will then aid designers in estimating thermal stresses existing

in a structural component and in turn, allow them to prevent component failure.

1.1  Goals and Objectives

The main goal of this research is to predict the thermal properties of composite
materials. This prediction requires temperature measurements, and therefore, experiments

must be conducted. The overall objectives of this study are to

1) develop optimal experimental designs to be used in the prediction of these thermal
properties

and

2) utilize these optimal designs in the development of an estimation procedure to

determine the effective thermal properties, namely the thermal conductivity and

volumetric heat capacity.
Optimal experiments were designed for both isotropic and anisotropic composite materials
by selecting optimal experimental parameters that maximize the sensitivity of the
temperature response with respect to changes in the unknown thermal properties. An
isotropic material has identical properties in every direction while materials exhibiting
directional characteristics are called anisotropic. For the anisotropic composite material,
the effective thermal conductivity both parallel and perpendicular to the fiber axis
direction can be estimated. This optimization procedure was performed because it

increases the accuracy in the resulting thermal property estimates by minimizing the

3



confidence intervals of the estimated parameters.

The experimental designs that were optimized not only depend on the boundary
conditions used, but also on what variability is permitted. An imposed heat flux at one
boundary, resulting in conductive heat transfer through the composite sample, is required
in the design to allow for the simultancous estimation of the thermal properties.
Therefore, optimal experimental parameters, such as the duration of the applied heat flux,
should be determined. The optimal experimental parameters determined for the isotropic
case include the heating time, sensor location, and experimental duration. For the
anisotropic case, two different experimental designs were used. Both designs had a
uniform heat flux applied over a portion of one boundary. However, this portion varied
for the two configurations. Therefore, in addition to the parameters optimized for the
one-dimensional case, the optimal position of the heat flux was also found in the two-
dimensional analysis.

Utilizing the optimal experimental design determined for the isotropic composite
material, the effective thermal conductivity perpendicular to the fiber axis and the
effective volumetric heat capacity were then estimated for a composite consisting of
continuous IM7 graphite fibers and a Bismaleimide (5260) epoxy matrix. Note that this
is actually an anisotropic composite material, however, since the thermal conductivity is
only estimated in one direction, this is equivalent to using an isotropic material. The
estimation procedure used in this investigation was the Gauss ﬁneariiation method and
is based on the minimization of a least-squares function, containing experimental and

calculated temperatures, with respect to the unknown thermal properties. This method not

4



only allows for the effective thermal conductivity and effective volumetric heat capacity
to be estimated simultancously, but also enables validation of the transient heat

conduction equation.



Chapter 2

Literature Review

2.1  Determination of Thermal Properties of Composite Materials

This chapter summarizes the present state of knowledge pertaining to the
estimation of thermal properties of composite materials. Due to their anisotropic nature,
the estimation of the thermal properties of composites has proved to be a challenging task.
This estimation problem is further complicated because a composite consists of at least
two different materials, each with different thermal properties. Many methods, both
experimental and analytical, have been proposed for estimating these properties with the
thermal conductivity being most frequently estimated. In the following two sections,
these estimation techniques are reviewed, describing the methods and procedures used.
The experimental techniques utilized include both steady-state and transient heat
conduction processes, while the analytical methods estimate the effective thermal
properties using proposed mathematical models. These models assume prior knowledge

of the thermal properties of the fiber and matrix themselves, along with the void fraction



of the fibers. The third section describes a minimization procedure based on the Gauss
method used to estimate the thermal properties. The advantage of this procedure over
previous techniques is that it allows thermal properties, such as thermal conductivity and
volumetric heat capacity, to be estimated simultaneously. The thermal properties are
found by minimizing an objective function containing calculated and measured
temperatures. The last section discusses optimal experimental designs to be used with this
minimization procedure which provide more accurate parameter estimates. Optimal
experimental parameters to be used in these designs are found by maximizing the

sensitivity of the temperature response with respect to changes in the thermal properties.

2.1.1 Experimental Determination of the Thermal Properties of Composite Materials

Experimental methods have been one of the main areas for determining the
thermal properties of composite materials. These methods can be classified as either
steady-state or transient. Ziebland (1977) described some steady-state experiments used
to calculate the thermal conductivity that used both absolute measurements, where the
thermal conductivity is determined directly from the measured quantities, and relative
methods, in which the thermal conductivity is determined by reference to a substance of
known thermal conductivity. The absolute methods are accurate but require expensive
instrumentation and are generally time consuming and thus, expensive. One steady-state,
absolute technique frequently used is the guarded hot-plate method. In this method, the
specimen is heated by a hot metal plate attached to it and the resulting temperature is

measured at the interface to estimate the thermal conductivity (Ziebland, 1977). Although
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this method is quite accurate, substantial time is required to reach steady-state; therefore,
the experiment is both expensive and time consuming.

Dickson (1973) has also described a simple steady-state method for measuring the
thermal conductivity of insulation materials using heat flow sensors. This method
requires the measurement of a heat flux and the temperature difference across a test
specimen of known thickness. Penn, et al. (1986) extended this method to composite
materials and developed a thermal conductivity measuring apparatus that uses heat flow
sensors. This steady-state device used smaller sample sizes and as a result, reached
thermal equilibrium in only a few hours. In addition, Harris, et al. (1982) used a two
plate apparatus to experimentally determine the thermal conductivities of Kevlar 49 fibers
in directions parallel and perpendicular to their lengths as functions of temperature, while
Havis, et al. (1989) experimentally investigated the effect of fiber direction on the
effective thermal conductivity of fibrous composite materials.

The evaluation of thermal conductivity from steady-state experiments is
mathematically simple but frequently lengthy; it was for this reason that transient methods
were developed. One transient method used to determine the thermal diffusivity, heat
capacity, and thermal conductivity of materials is the laser-flash method which was first
introduced by Parker, et al. (1961). In this method, the front face of a small sample is
subjected to a short, radiant energy pulse. The resulting temperature rise on the rear
surface of the sample is measured and the thermal diffusivity is then determined from the
time required for the back surface to reach one half of the maximum temperature rise.

This can be mathematically expressed as



_KL?

2

(2.1)

where K is the constant corresponding to one-half of the maximum temperature rise, L
is the sample thickness, and ¢,, is the time taken for the back surface to reach one-half
of the maximum temperature rise. The heat capacity is found from the maximum
temperature rise of the specimen, and the thermal conductivity is then calculated from the
product of the thermal diffusivity, heat capacity, and density (k=0ipc,). The advantage
of this technique over steady-state methods is that smaller sample sizes and shorter
experimental durations could be used. Taylor, et al. (1985) studied the applicability of
the laser-flash technique for measuring the thermal diffusivity of fiber-reinforced
composites and found that the technique is appropriate for examining the transient heat
flow in these materials.

Lee and Taylor (1975) used the laser-flash method along with an absolute method
to directly measure the thermal diffusivity of graphite/carbon fiber in unidirectionally
fiber-reinforced composites. The thermal diffusivity of graphite fiber-reinforced
composites (Morganite II and Thronal 50 S) was also calculated from the effective
thermal conductivity of composite samples measured by an absolute method. Taylor and
Kelsic (1986) also used the laser-flash method to measure the thermal diffusivity of
unidirectional fiber-reinforced composites. They then investigated the effects of the
thermal conductivity ratio, fiber fraction, fiber orientation, and specimen length on the

thermal diffusivity. Their results indicated that the fiber-matrix thermal conductivity ratio



was the major factor governing the thermal behavior followed by the fiber volume
fraction. In addition, the thermal diffusivity of both silica and carbon fiber-phenolic resin
composites was measured as a function of temperature using the laser-flash technique
(Mottram and Taylor, 1987a). This work was extended (1987b) and the effective thermal
conductivity parallel and perpendicular to the fiber axis was calculated using specific heat
and density data.

The composite method was used by Brennan, et al. (1982) to measure the thermal
conductivity and diffusivity of silicon carbide fibers. This method consists of measuring
the thermal diffusivity of the composite and the matrix itself (without the fibers) using
the laser-flash technique. From the definition of thermal diffusivity and the Rule-of-
Mixtures (discussed in the next section), the thermal properties of the fiber can then be
determined. It was found that the accuracy of the thermal conductivity values determined
for the fibers could be increased by using a matrix material with a thermal conductivity
as close as possible to that of the fibers. Furthermore, for this method to yield reliable
data, it is essential that the scale of the microstructure and the size of the composite
sample behave as a continuum in its transient response (Brennan, et al., 1982).

The laser-flash method also served as the basis for the techniques developed by
Welsh, et al. (1987, 1990). In these studies, a pulsed heat flux was imposed on the
surface of a material and the resulting thermal response at the same surface was then
recorded. This method differs from the traditional laser-flash rﬁethod in that the
temperature response is observed at the heated surface rather than on the surface opposite

to the flux. One disadvantage of this method is that the heat capacity and thermal
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conductivity cannot be estimated independently, only the thermal diffusivity can be
determined.

In addition, Fukai, et al. (1991) also conducted transient experiments using a
periodic hot-wire heating method to simultaneously estimate the thermal conductivity and
diffusivity. In this method, the thermal conductivity and diffusivity were determined from
the amplitude and phase lag of the temperature response. The calculated properties agree
well with those measured by conventional methods. Beck and Al-Araji (1974) also used
a transient experiment to estimate thermal conductivity and volumetric heat capacity

independently.

2.1.2 Mathematical Determination of the Thermal Properties of Composite Materials

Mathematical models that are functions of the components of a composite have
also been used to determine the effective thermal properties, particularly thermal
conductivity. These models are based on the original theories by Maxwell and Rayleigh
(Hasselman and Johnson, 1987), with the effective properties being direct functions of the
thermal properties of the constituents, namely the fiber and the matrix. Therefore, it is
assumed that the thermal properties of the matrix and fiber are known, along with the
void fraction of the fibers. Typically, results of the mathematical model approach are
expressed as the ratio of the effective conductivity of the composite to the matrix
conductivity. This ratio depends on the ratio of the volume of the. fiber to the total
volume and the fiber-matrix conductivity ratio (Han and Cosner, 1981). Hasselman

(1987) also found that if an interfacial thermal barrier resistance was present in a
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composite system, the effective thermal conductivity not only depends on the volume
fraction of the fibers but also on the fiber size.

One mathematical model, known as the Rule-of-Mixtures, to describe the effective
thermal conductivity (k,;) of a composite with heat flow parallel to the axis of the fiber
is given by

kg =kV,+ (1 -V, 2.2)
where k; is the thermal conductivity of the fibers, k,, is the thermal conductivity of the
matrix, and V, is the fiber volume fraction.

A unit-cell approach was presented by Ziebland (1977) to describe the thermal
conductivity of a composite perpendicular to the fiber axis; this can be mathematically

expressed as
L = kk:
7 R Ak

(2.3)

The Rule-of-Mixtures has also been used to calculate the effective thermal

diffusivity (Taylor and Kelsic, 1986).

V Vk
Q,, = /C Y nm
Vipc), + V, (po),

24)

Here, V,, is the matrix volume fraction and (pc); and (pc),, are the volumetric heat
capacities of the fiber and matrix, respectively.

As indicated by Progelhof, et al. (1976), none of the correlations developed
accurately predict the thermal properties of all types of composites. A review of
additional models used to predict the thermal conductivity of composite systems is given

12



by Progelhof, et al. (1976). Beran and Silnutzer (1971) presented upper and lower bounds
for the effective thermal conductivity of a fiber-reinforced composite in terms of volume
fractions and a geometric factor. They found that the effective thermal conductivity could
be significantly increased by changing the packing geometry.

In addition to the analytical models used to estimate thermal properties, numerical
methods have also been incorporated. Havis, et al. (1989) developed a numerical model
using the finite difference method that calculated the effective thermal conductivity of
aligned fiber composites when the fiber to matrix conductivity ratio was greater than one.
James and Harrison (1992) extended this finite difference method to enable the calculation
of the temperature distribution and effective thermal conductivity in composite materials
made from anisotropic materials. The standard finite difference equations were modified
on a node-by-node basis to take into account anisotropy by local re-orientation of the grid.
A finite difference method has also been used by James and Keen (1985) to calculate the
thermal conductivity of uniaxial fiber composites. The effective thermal conductivity was
then found from the fiber-matrix ratio for a range of fiber volume fractions. This finite
difference approach was modified by James, et al. (1987) to calculate the transverse
thermal conductivity of continuous fiber composites in which the fibers can be at any
angle to the faces of the sample.

In addition to the finite difference approach, finite elements has also been used to
predict thermal properties. A finite element analysis of a unit-cell approach was used by
Han and Cosner (1981) to measure the effective thermal conductivity of fibrous

composites for two different geometrical arrangements of the fibers, rectangular and
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staggered. Their analysis assumed prior knowledge of the geometry and thermal
conductivities of the composite constituents. Veyret, et al. (1993) also used a finite
element formulation to determine the effective thermal conductivity of a composite
material using the Laplace equation.

Other methods have also been used to determine thermal properties. One such
method is based on the analogy between the response of a unidirectional composite to
longitudinal shear loading and to transverse heat transfer (Springer and Tsai, 1967). In
this approach, the thermal conductivities of unidirectional composites were predicted by
replacing the composite stiffness with the thermal conductivity and the shear modulus
ratio with the thermal conductivity ratio of the components in the numerical solutions
obtained for the shear loading problem. Ishikawa (1980) used a method that was
equivalent to that used by Springer and Tsai. His method was again based on the
longitudinal shear problem and measured the thermal conductivities of unidirectional,
carbon-epoxy composite systems using an apparatus based on the infra-red radiation
method. These analytical results were obtained using a Fourier series analysis and
required knowledge of the thermal conductivity of the matrix and the fiber volume
fraction.

Another technique presented by Behrens (1968) used the method of long waves
to obtain the average thermal conductivity. By calculating .the thermal waves damping
coefficients in the principal directions of the medium, Behrens was able to develop
explicit expressions for the average thermal conductivity. In addition, Mottram (1992)

developed design charts to estimate the effective longitudinal and transverse thermal
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conductivities of continuous composites using only the fiber and matrix properties.

2.2  Minimization Methods Used for the Estimation of Thermal Properties

An alternate procedure for estimating the thermal properties of composite materials
is to use a minimization technique. One minimization technique frequently used is the
Gauss linearization method. This is an iterative procedure that involves the minimization
of the least squares function. Beck (1963) was the first to use this minimization

procedure to estimate thermal properties, namely thermal diffusivity.

2.2.1 Gauss Linearization Method

The Gauss Linearization method, which is based on the least squares function, is
one of the more popular estimation methods used. This method not only allows for the
simultaneous estimation of the thermal properties, but also enables validation of the
transient heat conduction equation. A least squares function, as given by Beck and

Arnold (1977), is

S =[Y - TRYIY - T®)] 2.5)

where Y is a vector containing measured temperatures, T() is a vector containing
calculated temperatures, and [ is the true parameter vector. Here, the thermal properties
are found by minimizing the square of the difference between the measured temperatures

and the calculated temperatures. For continuous, transient temperature measurements, the

15



sum of squares function is minimized with respect to the parameters using the Taylor
series approach. This is done by differentiating S with respect to §, setting the resulting
equation equal to zero, and then solving for b, the estimated parameter vector for 8. This
method, as described by Beck and Amold (1977), is one of the simplest and most
effective methods for seeking minima which are reasonably well-defined provided that
the initial estimates are in the general region of the minimum. However, as explained by
Box and Kanemasu (1972), if poor initial estimates for the parameters are used or severe
non-linearity in the model exists, this method may cause large oscillations to occur from
one iteration to another which leads to non-convergence of the estimates. In an attempt
to improve the Gauss method, Box and Kanemasu (1972) modified it by changing the
step size used in seeking the minimum. However, this method still did not include a
check that the sum of squares function, S, decreased from iteration to iteration. Bard
(1970) modified the Box-Kanemasu method to include this check; if the function was not
- decreasing, the step size is reduced by one-half.

The Gauss estimation procedure was used by Beck when he determined the
thermal conductivity and specific heat of nickel simultaneously from transient temperature
measurements (1966a) and the thermal contact conductance for both steady-state and
transient conditions with a periodic contact (1988). Scott and Beck (1992a) also used this
method to simultaneously estimate the thermal conductivity and volumetric heat capacity
of carbon composites as functions of temperature and fiber orientation. They found that
the thermal properties increased with temperature over the range studied and different
stacking orientations resulted in significantly different thermal conductivity values. This
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method was also used by Scott and Beck (1992b) to develop an estimation methodology
for thermoset composite materials during curing, and by Xu and Bao (1990) to
simultaneously estimate thermal conductivity and diffusivity.

Loh and Beck (1991) performed a two-dimensional analysis using this estimation
procedure to simultaneously determine the effective thermal conductivities of anisotropic
thermoset carbon composites parallel and perpendicular to the fiber axis. They found that
the conductivity parallel to the fibers is about seven times higher than transverse to the
fibers. In addition, Jurkowski, et al. (1992) used this method to simultaneously estimate
the thermal conductivity and thermal contact resistance, as did Garnier, et al. (1992) to
simultaneously estimate thermal conductivity and volumetric heat capacity without
internal temperature measurements. Instead, temperature measurements were made with
thin resistance thermometers and thermocouples. Using finite differences to describe the
heat transfer model, Pfahl and Mitchel (1970) used this minimization technique to
estimate six thermal properties of a charring carbon-phenolic material. The calculated

property values were shown to be in good agreement with values from conventional tests.
2.3  Optimal Experimental Designs

Reliable estimation of thermal properties is extremely important in the utilization
of composite materials. The accuracy of these estimates can be increased if the
experiments are designed carefully. A carefully designed experiment is one in which

there is minimum correlation between the estimated properties, as well as maximum

17



sensitivity of the measured experimental variables to changes in the properties being
estimated (Beck and Arnold, 1977). To create such optimal experimental designs, optimal
experimental parameters should first be determined. Many criteria have been proposed
for the design of optimal experiments. Beck and Arnold (1977) have listed some of these
criteria that are all in terms of the product of the sensitivity coefficients and their
transpose (X’X). These coefficients are the derivative of temperature with respect to the
parameters being estimated. The proposed criteria are (1) maximization of the
determinant of X'X, (2) maximization of the minimum eigenvalue of X"X, and (3)
maximization of the trace of X’X. The first method was chosen in this study because it
has the effect of minimizing the confidence intervals of the resulting estimates.

This optimization method was used by Beck to determine the optimal experiments
for the simultaneous estimation of thermal conductivity and specific heat (1969) and to
determine the optimal transient experimental design for estimating the thermal contact
conductance (1966b). Taktak, et al. (1991) also used this technique to determine the
optimal heating time of an applied heat flux, optimal number of temperature sensors, and
the optimal temperature sensor location for the estimation of thermal conductivity and
volumetric heat capacity of a semi-infinite and a finite thickness composite material.

As explained, several methods for estimating the thermal properties of composite
materials have been proposed. These include both experimental methods and the use of
mathematical models. The procedure used in this study to estimate the .thermal properties
is a modification of the Gauss Linearization method discussed in Section 2.2.1. This

method was chosen because it allows for the effective thermal conductivity and effective
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volumetric heat capacity to be estimated simultaneously. Also, when using this technique,

optimal experiments can be designed resulting in more accurate parameter estimates.
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Chapter 3

Theoretical Analysis

In this chapfer, the theoretical development used to determine the optimal
experimental designs for both isotropic and anisotropic composite materials is presented.
The minimization procedure used to estimate the effective thermal conductivity
perpendicular to the fiber axis and the effective volumetric heat capacity of a carbon
fiber-epoxy matrix composite is also discussed. Recall that this estimation procedure
requires both experimental and calculated temperatures. In this study, both exact
analytical temperature solutions and numerical temperature solutions were obtained, with
the two results being compared to determine the accuracy of the numerical results. The
numerical solutions were calculated using a finite element program called Engineering
Analysis Language (EAL, Whetstone, 1983). This finite element software was utilized
because of the need for future analyses of complex structures, typical in aerospace

components, for which exact solutions are either complicated or unavailable.

The first section of this chapter focuses on the mathematical models used to

describe one-dimensional (isotropic) and two-dimensional (anisotropic) heat conduction
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processes. The second section describes the mathematical details of the parameter
estimation technique used in both the exact and numerical analyses to estimate the
thermal properties. Note that in both cases, the thermal properties estimated were the
effective properties of the composite, not of the individual fiber and matrix components.
In the final section, the mathematical criterion used to design optimal experiments,

resulting in greater accuracy of the thermal properties, is discussed.

3.1 Mathematical Models Used in Estimating the Thermal Properties of
Composite Materials

The formulation of a mathematical model is based on the experimental system
being analyzed. In this investigation, formulating mathematical models, either exact or
numerical, to describe the conductive heat transfer occurring within the composite sample
will allow for the temperature distribution to be calculated. This distribution is required
for the estimation of the thermal properties. As mentioned, both one-dimensional and
two-dimensional heat conduction analyses have been conducted. The mathematical

formulation behind both are defined in the following two subsections.

3.1.1 One-Dimensional Analysis - Isotropic Composite Material

For the isotropic situation, one-dimensional heat conduction through a carbon-
epoxy composite was investigated. Note that this isotropic situation is equivalent to

analyzing the properties in one direction of an anisotropic composite, as was the case in
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this study. The samples used consisted of a thin, flat disk with an aspect ratio such that
the two-dimensional effects at the edges can be ignored. One plane boundary had an
imposed heat flux perpendicular to the fiber axis, and a known, constant temperature
existed at the second boundary, as shown in Fig. 3.1. Since composite materials tend to
have low thermal conductivities in directions perpendicular to the fibers, this isothermal
boundary condition is readily available. The heat flux boundary condition is required for
the independent estimation of the thermal properties. This requirement occurs because
this type of boundary condition introduces a new equation into the model which contains
only the thermal conductivity and not the volumetric heat capacity. This equation is

known as Fourier’s Law and is given by

oT
= -k
qx x-¢) ax

@3.1)

where ¢, is the applied heat flux. If this boundary condition was not used, and instead,
a constant temperature or insulated condition was used, then only the thermal diffusivity
(Kpc,) could be estimated.

The formulation to describe this problem can be found from an energy balance and

is expressed as

d oT aT
—k = Cp— 0 L t>0 32
ax(” ij Y ot SEsh g G2

where T is temperature, k. and x are the effective thermal conductivity and position,

respectively, in the direction of heat transfer, C,;is the effective volumetric heat capacity
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(or product of density and specific heat), and ¢ is time. The heat flux and constant

temperature boundary and initial conditions can be described as

—kx_egz=qx x=0 O0<t<y,
=0 x=0 t>t, (3.3a,b)
Txt) =T, x=1L t>0 (3.4
Tx,t) =T, 0<sx<L, t=0 (3.5)

where ¢, is the time that the heat flux is applied to the sample. After this time, the
boundary condition becomes insulated, as seen by Egs. (3.3a,b). The heat flux, g,, the
temperature at x = L, (T,,), and the initial temperature, 7,, are assumed to be known
without errors. Note that two solutions were required for this analytical problem; one
while the heat flux was applied and one after the duration of the heat flux. Also, since
the experiments were conducted at room temperature, it was assumed that the temperature
at x = L, was equal to the initial temperature; i.e. T,, = 7. Using these assumptions, the
exact solutions to describe the temperature distributions were obtained using Green’s

function (Beck, et al., 1992). The Green’s function required for this solution is given by

o / 2
X X -0k _ (t—T
G (xtlx' 1) = .2‘_2: cos P, cos B, exp Prke o) 3.6)
L 5= L L L%C

x eff

where B, is an eigenvalue represented by

B, =m (n - l) 3.7)



(Beck, et al., 1992). Using Eq. (3.6), the one-dimensional temperature distribution was

solved for, resulting in the following:

L x B2k
Tx,t) =T,, + 9 1 -2X- ZZ:L2 cos B, exp| B "";ﬁt (3.8)
kx-eﬁ‘ Lx n=l Bn Lx CeﬁL *

forO<t<t, and

o _R2 _R2 -
qux E _L cos Bn‘x Bnkx-eﬁt Bnkx_eﬁ(t th) (3.9)

exp| ————— | - exp|

T) =T, -2 d ‘ '
kx-eﬂ’ n=l B,, Lx CeﬂLx C eﬂLI

fort > ¢,

The temperature solution was also obtained numerically from the finite element
software, EAL, using an implicit transient analysis. In EAL, the weighted residual
method is used to derive the implicit time integration equations. During each time step,

the temperature vector is approximated by
(C + AK)T,,, = (C - A(K)T, + FAt + FAt? (3.10)

where T, is the temperature vector at time ¢, T,,, is the temperature vector at time ¢, ;, At
is the time step size, C is the capacitance matrix, K is the stiffness matrix, and F is the
matrix containing the boundary conditions. (Whetstone, 1983). Again, a numerical
approach was utilized for the future need to analyze complex structures which do not

have exact solutions available.

3.1.2 Two-Dimensional Analysis - Anisotropic Composite Material

The two-dimensional analysis is similar to the one-dimensional analysis, only now,
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two-dimensional heat conduction through an anisotropic composite sample is considered.
Two different experimental configurations were used in this analysis. The first consists
of an imposed heat flux perpendicular to the fiber axis over a portion of one boundary
(with the remainder of the boundary insulated) and known constant temperatures at the
remaining three boundaries, as shown in Fig. 3.2. The second configuration also has a
heat flux imposed over a portion of one boundary, only now, the boundary opposite to
the heat flux is maintained at a constant temperature, while the remaining two boundaries
are insulated, as shown in Fig. 3.3. For both experimental assemblies, the heat flux
boundary condition will allow for the determination of thermal conductivity in two
directions. However, the actual estimation of these thermal conductivities will not be
performed in this study; only the experimental designs required for this estimation process
will be analyzed (Section 3.3).

The temperature distribution within the material for both configurations can be

determined from conservation of energy

d oT 0 oT oT
|k —k =C 0 L O<y<L >0 (@(.11
ax( X—e, axJ + ay( y-eﬂ ay] (4 at < x < p 4 y y ( )

where, in this case, k. and y are the effective thermal conductivity and position,
respectively, perpendicular to the direction of heat transfer. The temperature solutions

obtained for both configurations are discussed in the following two subsections.
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Figure 3.2. Experimental Set-up Used for Configuration 1 in the Estimation of the
Effective Thermal Conductivities in Two Orthogonal Planes.
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Figure 3.3. Experimental Set-up Used for Configuration 2 in the Estimation of the
Effective Thermal Conductivities in Two Orthogonal Planes.
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3.1.2.1 Configuration 1 - Isothermal Boundary Conditions
The heat flux and isothermal boundary conditions and the initial temperature

condition for Configuration 1 (Fig. 3.2) can be described as

oT

'kmra;=‘1x x=0 O0<y<L, O<t<y

=0 x=0 O<y< prl t>t, (3.12a,b)
oI _p x=0 L, <y<L t>0 (3.13)

= - - p1 <Y y :
Txy,t) =T, x =1L, O<y< Ly t>0 (3.14)
Ty =T, 0<x<L, y=0 t>0 (3.15)
Teeys) =T, O<x<L  y=L t>0 (3.16)
T(x,y,t) =T, 0<x<L O<yc< Ly t=0 (3.17)

where g, is the applied heat flux, 7, ,, T, ,;, and T, , are the known temperature boundary
conditions, L, is the thickness of the plate in the x direction, L, is the thickness of the
plate in the y direction, L, is the portion of the plate where the heat flux is imposed, and

T.

1

is the initial temperature. The specific value for L,, will be found using the
optimization procedure discussed in Section 3 of this chapter. Note that once again, two
solutions are required for this analytical case; one while the heat flux is applied and one
after the duration of the heat flux. Also, since the experiments were again conducted at
room temperature, it is assumed that 7, =T, , = T, , = T, Using these assumptions, the

solutions to describe the temperature distribution within the composite sample were
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obtained using Green’s functions. For the two-dimensional case, two Green’s functions
are required for the temperature solution; one for both the x and y direction boundary
conditions. The Green’s function for the heat transfer along the x axis is provided in Eq.

(3.6), and the Green’s function along the y axis is given by (Beck, et al., 1992).

! -m*nk_, (t-1
Gtly'sn) = ’y E sin sin| Y exp Tk 170 (3.18)
L 2
m=1 y 'y l,y Ceﬂ"

where x,, is the effective thermal conductivity ratio, (k, 4k, ). Using these Green’s

functions, the temperature solutions for Configuration 1 are represented by

Txyt) =T, + qu EZ si nzcy cos i

- ﬁﬂm-l n=l y y

(L) [1 - exp(-49) (3.19)
mB
forO<t<t, and
B x mnL
Ty =T, + 4oL, cos|—— ||1 - cos L
1

(75) [expl-A(t-1,)] - exp(-Af)] (3.20)

for t > t,, where

m’n k
A= ra B e | (3.21)

Ly Cr L: Cr

B = m*wLyx_ + B, (3.22)
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and L, is the ratio of the composite dimensions (L,/L,).

3.1.2.2 Configuration 2 - Isothermal and Insulated Boundary Conditions
The heat flux and isothermal boundary conditions and the initial temperature

condition for Configuration 2 (Fig. 3.3) can be described as

oT _

o= = 4 x=0 O0<y<L, O<t<y
=0 x=0 0<y<L, t>t (3.23a,b)
oT _
§=0 x=0 L,<y<lL, t>0 (3.24)
Txyt) =T, x=1L, O0<y< Ly t>0 (3.25)
§1=0 0<x<L, =0 t>0 (3.26)
dy
oI _p O<x<lL -L >0 (3.27)
.3;’.- x . y=L, .
Txyt) =T, 0<x<L O<y <Ly =0 (3.28)

where L, , is the portion of the plate where the heat flux is imposed. Again, the specific
value for L, , will be found using the optimization procedure discussed in Section 3 of this
chapter. Due to the different boundary conditions used in the two configurations, L, , will
be different than L,, (the heat flux position calculated for Configuration 1). Since the
experiments were again conducted at room temperature, the same assumption was used
as for Configuration 1; ie., T,, = T, The solutions to describe the temperature
distribution within the composite sample were then obtained using Green’s functions.
Two Green’s functions are again required for this configuration, one for both the x and

y direction boundary conditions. The Green’s function along the x axis is provided in Eq.

30



(3.6), and the Green’s function along the y axis is given by (Beck, et al., 1992)

12 22
Kx / -m*n°k _ (t-T
Goaly'm) = 22| 1+ 23 cos cos| 22V | exp a0 (3.29)
g =1 L Lc

Using these Green’s functions, the temperature solutions for Configuration 2 are

represented by

Tooy) =T, + 24 by 22 "x [ 1 - exp(-Cp)]
kx-eﬁ' 'y n=l B x

. 4qx(t)Lx  — " mmny . anpl 1 _ _
nkx—eﬁ' ;g cos( " } ( Ly JSII\[ Ly mB [1 exp( At)] (3-30)

forO0<t<t, and

x -
T(x,y,0) = T” q.L, pZE Bn [e -Ce - 1) _ e('c‘)]
kx—gﬁ" y n=1 B Lx

49, ()L, & mmy | . | mrL,, [-AG - £)]
P cos cos sin P A
Tk 2> L L mB e ] (3.3h

x-gff M=l n=1

for t > t,, where A and B are given by Eqgs. (3.21) and (3.22), respectively, and C is
represented by

2
C - Bnkx—eﬁ

2
L Cy

(3.32)

In determining these temperature distributions as functions of time, one should note that
there are steady state terms which need to be calculated only once since they are time
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invariant. This is important since these series are slow to converge and require hundreds
of terms, whereas the time varying terms of the summation converge rather quickly. An
alternate solution method involves the use of time partitioning (Beck, et al., 1992). In
this method, the solution is partitioned into two regions and both large-time and small-
time Green’s functions are used to find the temperature. For example, at early times, the
solution is the same as that for a semi-infinite body, and therefore, the overall solution

can be divided up into early and steady state solutions.

3.2  Minimization Procedure Used in Estimating the Thermal Properties

The method used to estimate the thermal properties is based on the minimization
of an objective function with respect to the unknown parameters, effective thermal
conductivity and effective volumetric heat capacity. This procedure is called the Gauss
method and allows for the simultaneous estimation of the thermal properties. A
modification of the Gauss method that allows for nonlinearities in the model to exist is
the Box-Kanemasu method, which is utilized in this investigation. In this method, the

objective function used is the least-squares function, S, and is given by
S=[Y -TEVF Y - TG) (3.33)

(Beck and Arnold, 1977). Here, Y is the measured temperature vector, T(B) is the
calculated temperature vector found using a transient mathematical model (as given in

Eqs. (3.8-9), (3.19-20), and (3.30-31)) and the parameter estimates, and J is the exact
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parameter vector that contains the unknown thermal properties. The objective function,
S, is minimized with respect to the unknown parameters, 8. This is done by
differentiating § with respect to B and setting the resulting equation equal to zero, giving
VES =2[-X"@®1 Y -T@)] =0 (3.34)
(Beck and Arnold, 1977). Here, the sensitivity coefficient matrix, X(B) is defined as
XP = [VETT@]T (3.35)
These coefficients are the derivatives of temperature with respect to the parameters being
estimated and represént the sensitivity of the temperature response with respect to changes
in the unknown parameters. In order for the parameters to be estimated simultaneously,
the determinant of the sensitivity coefficients and their transpose, | X"X |, cannot equal
zero. That is, any one column of X cannot be expressed as a linear combination of any
other column.

Because the heat conduction process in this study is a non-linear problem, the
estimator, B, cannot easily be solved for. Therefore, two approximations are used in Eq.
(3.34) to prevent this difficulty; (1) Replace X(B) by X(b), where b is an estimate of 8,
and (2) Use the first two terms of a Taylor series for T(B) about b to approximate T(B)
(Beck and Arnold, 1977). Using these approximations and implementing an iterative
scheme, Eq. (3.34) can be solved for b, the estimated parameter vector, resulting in the

following expression for b**/;
BED = p® + POIXT® (Y - T® )] (3.36)

where
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PO = [x®Tx®]-1 (3.37)
This is known as the Gauss linearization equation Here, k is the iteration number, b*+
is the new parameter estimate, b is the estimate at the previous iteration, and T(b)¥
contains temperatures calculated using ™.
For a nonlinear problem, Eq. (3.36) is altered and becomes

pED = p® 4 h(k+1)Agb(k) (3.38)
where

Agb(") = POX™ (Y - T® )] (3.39)

and h**" is a scalar interpolation function. To use this nonlinear estimation procedure,
an initial estimate, b”, is required. This estimate is then used to calculate 7 and X
which are used to obtain the improved parameter vector, . This procedure continues
until all parameters in b do not change significantly (Beck and Arnold, 1977).
Equation (3.38) represents the Box-Kanemasu method which is a modification of
the Gauss method. In the Box-Kanemasu method, the sum of squares, S, is approximated
at each iteration by a quadratic function in A. The minimum § is located where the
derivative of § with respect to h is equal to zero, or at an k value of (Beck and Arnold,

1977)
ROV = GOES® _ g® | 9G0g (3.40)
where |

G® =[Ap®I" (X"X®)[A p¥] (3.41)
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The parameter for o is initially set equal to one and S, and S,® are the values of S at
o, and zero, respectively. If S, is not less than S,%, o is reduced by one-half and the
inequality is checked again. This is a modification over the original Box-Kanemasu
method. A flow chart illustrating the modified Box-Kanemasu estimation procedure, as
presented by Beck and Arnold (1977), is shown in Fig. 3.4. Note that if the investigation
requires o, to become less than 0.01, the calculations are terminated. One reason why this
may occur is that correlation (or linear dependence) between the sensitivity coefficients
exists, causing the sum of squares function not to have a unique minimum. It is therefore
very important to calculate and analyze the sensitivity coefficients for possible correlation
to ensure reliable parameter estimates.

A parameter estimation program was written using the modified Box-Kanemasu
method and is called MODBOX; this program is based on the original program NLINA,
by Beck (1993). This program uses sequential in-time estimation to calculate the
parameters at each time step. The exact mathematical models given in Egs. (3.8) and
(3.9) were used in this program as well as the derived sensitivity coefficients, allowing
for the estimation of the effective thermal conductivity perpendicular to the fibers and the
effective volumetric heat capacity of a composite consisting of IM7 graphite fibers and
a Bismaleimide epoxy matrix. The modified Box-Kanemasu method was also
implemented into EAL where the temperature solution was obtained numerically. Again,
the same effective thermal properties were estimated. The advantagé of this sequential
estimation technique is that it allows the user to observe the effects of additional data on
the sequential estimates and study the validity of the proposed mathematical model and
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Figure 3.4 Flow Chart for the Modified Box-Kanemasu Estimation Procedure
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experimental design. Ideally, at the conclusion of an experiment, any additional data

should not affect the parameter estimates.

3.3 Optimal Experimental Designs Used in Estimating Thermal Properties of
Composite Materials

Since the Gauss method requires experimental temperatures of the composite
system to be measured, the accuracy of the thermal properties estimated can be greatly
increased if these experiments are designed carefully. To create such optimal
experimental designs, optimal experimental parameters must first be determined. The
focus of this section is on the criterion used in obtaining these optimal parameters. For
the one-dimensional analysis, the experimental design consisted of a thin plate with an
imposed heat flux applied for a finite duration at one boundary and a known, constant
temperature at the second boundary. For this design, the optimal experimental parameters
that were determined are the heating time, temperature sensor location, and total
experimental time.

For the two-dimensional heat conduction analysis, two different configurations
were used, allowing for the effective thermal conductivity in two directions and the
effective volumetric heat capacity to be determined simultaneously. Both designs had a
heat flux imposed over a portion of one boundary, with the remainder of the boundary
insulated. In addition, Configuration 1 had known, constant temperatures at the remaining

three boundaries, while Configuration 2 had a constant temperature at the boundary
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opposite to the heat flux, and insulated conditions at the remaining two boundaries.
Therefore, in addition to the optimal experimental parameters found for the one-
dimensional case, the optimal position of the heat flux was also determined for both
configurations used in the two-dimensional case. Note, however, that this optimal heat
flux location will not be the same for both configurations due to the different boundary

conditions used.

3.3.1 Design Criterion Used for Optimal Experimental Designs

Many criterion have been proposed for the design of optimum experiments. As
mentioned previously, the sensitivity coefficients indicate the sensitivity of temperature
to changes in the thermal properties and optimal experiments are those which maximize
these coefficients for each property. Therefore, the criterion chosen for this analysis is
the maximization of the determinant (D*) of X*’X*, which contains the product of the
dimensionless sensitivity coefficients and their transpose (Beck and Arnold, 1977). This
criterion is subject to a maximum temperature rise, a fixed number of measurements, and
the following seven standard statistical assumptions: additive, zero mean, constant
variance, uncorrelated normal errors with errorless independent variables, and no prior
information. It is recommended by Beck and Amold because it has the effect of
minimizing the confidence intervals of the resulting parameter estimates. Note, it was
desired to perform the optimization procedure in non-dimensional terms so the results
could be applicable for any material, not just composite materials.

For the one-dimensional analysis where two properties are estimated (k,.and C,p),
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| X*’X* | is a 2 x 2 matrix. Therefore, the dimensionless determinant is given as

||
D, = P B iy - (dy) (3.42a,b)
d12 dZZ
where d,,*, d,,*, and d,,* are found from (Beck and Arnold, 1977)
1] 1 | (s
d; =|— "X (tNX(t*) dt” (3.43)
g e

In this equation, M is the number of temperature sensors used and ¢*, ', and T,,"* are

defined as

T,.T k k
T = STl et gy e St (3.44a-0)

aLlk ., CL’ CL:

&

where t is the total experimental time, 7,,,, is the maximum temperature reached between
the start and end of the experiment, and T, is the surface (and in this case, initial)
temperature. It should be noted that this definition of 7,,,* was used to verify previous
optimal experimental parameter results by Taktak, et al. (1991) and is not the best
representative choice.

The integral in Eq. (3.43) was calculated numerically, being approximated by a
summation. From Eq. (3.43), it is evident that the matrix in Eq. (3.42a) is symmetric;
i.e., d;,* = d,,*. This simplifies the problem by decreasing the number of equations that
must be numerically integrated.

When extending this analysis to the two-dimensional case, three properties (k. .

k,.rand C,) can now be estimated simultaneously for both configurations. Therefore,
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| X*"x* | is a 3 x 3 symmetric matrix and the dimensionless determinant is given by
dl'; dl; dl;
Dyp =|dy dy dy
dyy dy dy
Dy'p = di(dndss - dys) - didiadss = disdy) + didisdyy ~ disd) (3.45a,b)
Again, the d;* values were found from Eq. (3.43), where the integral was calculated
numerically. To compare both configurations used in the two-dimensional analysis, the
value for T, * was redefined as the temperature reached at steady-state conditions. This
is a more accurate choice than the T,,, " selected for the one-dimensional design, used by
Taktak, et al. (1991), because it represents the true maximum temperature that can be
attained for the defined problem.
From Egs. (3.42) and (3.43), it is seen that the dimensionless sensitivity

coefficients are required for this optimization procedure; these coefficients are given by

k
X, = 2T (3.46)
qu .\./ kx-eﬁ’ akx-eﬂr
c
x: =__a T (3.47)

” qu,\/ kx-eﬁ aCzﬂ“
and

Xk+ = ky—eﬁ" aT
™ qu/ kx—eﬁ aky-eﬁ

(3.48)

where X[” and XC” are used in the one-dimensional analysis and X,,;y , X,,;’ ,

and ng are used in the two-dimensional analysis.
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3.3.2 One-Dimensional Optimal Experimental Design Formulation

In performing this optimization procedure, a mathematical model, either exact or
numerical, is required to represent the experimental process. An exact model for the one-
dimensional analysis is given by the temperature solutions in Egs. (3.8) and (3.9). Using

the following dimensionless variables

k k T-T
R - TI E B
CeﬁLx C ]Lx qx / x-eff

L

these temperature distributions can be expressed in dimensionless form as

T'x) =1 -x* - 2§: iz cos(B,x*) exp(—Bit +) (3.50)

n=1 n

forO< " <", and

TGet) = 2% L cos(Bx*) [exp(-B2r") - expl-Bie -] (351)
BZ

n=1 n

for ¢ > t,*, where B, is given by Eq. (3.7). This temperature distribution, which is
calculated using a dimensionless heating time, #,*, equal to the total experimental time,
is shown in Fig. 3.5 for several x* locations.

The dimensionless sensitivity coefficients, Xk;’ and X; , were then found by
differentiating Egs. (3.50) and (3.51) with respect to k..yand C,p The effective thermal

conductivity sensitivity coefficients are given by

X, =G -1 25|21 v |oosBx) exp(-B) (3.5

n=1 n
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Figure 3.5. Dimensionless Temperature Distribution (T") for One-Dimensional Heat
Conduction Using a Dimensionless Heating Time, t,, Equal to the Total
Experimental Time for Several x* (x/L,) Locations.



for 0 < f* < ¢*, and

+ bt - 1 . 24 1 + N 2
X, =23 cosBx) || = + 17 e -]+ (0o g | PO (3.53)
n=1 n "

for ¢ > 1,*, while the effective volumetric heat capacity sensitivity coefficients can be

expressed as
X; = —2f: t"exp(-Bit %) cos(Bx*) (3.54)
ot
for0 <t <*, and
XZ, = 23 [texp-Bir) - (1= enplBitr 1)) cosBr) (3:55)

for ¢ > ¢*.

These dimensionless sensitivity coefficients are then used in the optimization procedure
to determine the maximum determinant value, as given by Eqgs. (3.42) and (3.43), and the
corresponding optimal experimental parameters. Viewing these coefficients as functions
of experimental time will also give insight into the experimental design, as will be shown
in Chapter 5. The sensitivity coefficients in dimensional form are also required in the
program, MODBOX, to estimate the effective thermal conductivity and effective

volumetric heat capacity simultaneously, as shown in Egs. (3.36) and (3.37).

3.3.3 Two-Dimensional Optimal Experimental Design Formulation

The exact model used to describe the temperature distribution for two-dimensional

heat transfer in an anisotropic composite material is given in Egs. (3.19) and (3.20) for
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Configuration 1 and Egs. (3.30) and (3.31) for Configuration 2. The derived sensitivity
coefficients for both configurations required for the optimization procedure are discussed

in the following two subsections.

3.3.3.1 Optimal Experimental Design Formulation for Configuration 1
Using the dimensionless variables already given in Eq. (3.49) along with the
following non-dimensional variables

+ Yy + LPi ;
y =L, Li=E =2 (3.56a,b)
y y

(i corresponds to the configuration number) the temperature distributions for

Configuration 1 can be expressed in dimensionless form as

T'x*y"t") = %f: i sin(mmy *) cos(B x *) [1 - cos(anpfl)]

m=1 n=1

: (713_) [i- exp(-Bt ) (3.57)

forO<r <¢*, and

m=1 n=1 mB

T*Gx'y*t?) = %f: Y sin(mny ) cos(Bx") [1- cos(mat,’)] (__1_)

: [exp[-B(t’ - )] - exp(-Br *)] (3.58)

for £* > %, where L, (L/L,) and X, (k, /%, ;) are the dimension and effective thermal
conductivity ratios, respectively, and B is given in Eq. (3.22).

The sensitivity coefficients for all three effective parameters, thermal conductivity
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perpendicular to the fibers (k,.;), thermal conductivity parallel to the fibers (k,..q), and
volumetric heat capacity (C,), were then calculated by differentiating the above
temperature distribution with respect to each property. The sensitivity coefficients for the

thermal conductivity perpendicular to the fiber axis are given by

Xk;’ = if:f: sin(mmy *) cos(an Y1 - cos(mnl?,,’l)] (L)

m=l n=l mB

-[ﬁit ‘exp(-Bt*) + (D - 11 - exp(-Bt *))] (3.59)

forO0<¢ <t¢', and

Xk;” = iE Esin(mny ) cos(Bx*) [1- cos(anpfl)] (.;n%J

m=1 n=1

. [(D - 1)(6 [-B@*-40 _ e(-Bt‘)) + B:t ) (-Br*) _ Bi(t +_ th*)e (AN ] (3.60)
for t* > t,* where D is equal to

227 2
m“nyny

D = (3.61)

2,21 2 2
m’ Lok, + B,

The dimensionless sensitivity coefficients for ng and Xk;’ were also calculated; the

solutions for 0 < #* < #," are given by

X, = if: i sin(mmy *) cos(B x*) [1- cos(anpfl)](_}_B_) (-Bt*exp(-Bt*)) (3.62)
* m

m=1 n=1

and

45



Xk;” = —2-2”: f: sin(mmy *) cos(Bx*) [1- cos(mnL,,)]

m=1 n=xl

1 . . .
. (.’_n_B.J [m2 Lfylcxyt exp(-Bt*) - D1 - exp(-Bt ))] (3.63)

and for t > ¢*, by

X, = if:i: sin(mmy *) cos(Bx*) [1- cos(anptl)](LBJ
o m.

m=1 n=1

and
X, = iE Y sin(mmy *) cos(Bx*) [1- cos(anpfl)](_m%)
m=1 n=l

. [D(e (=Bt _ e['B(V";)]) + m2n2L’;ny (t to (“BtY) _ (t+ _ t,,’)e [-B(*~ :)]) ] (365)

where B and D are given in Egs. (3.22) and (3.61), respectively.

3.3.3.2 Optimal Experimental Design Formulation for Configuration 2

Using the dimensionless variables given in Egs. (3.49) and (3.56), the temperature
distribution obtained for Configuration 2 (Egs. (3.30) and (3.31)) can be expressed in
dimensionless form as

T*(x*y*t") = 2L, E—BlT cos(B x*) [ 1-e —Bft‘]

n=1

4 o % R + . + ]. _ ~Bt*
+ _ZE cos(B,x*) cos(mmy*) sin(mnL,,) (',TJQ_)[ 1-eC® )] (3.66)

m=1 n=1
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for 0 < <", and

T+(x +,y +,t +) = 2LPT2 E i2 COS(ﬁnx +) [e [-Bi¢ -t -e ('B:t')]

n=1
n

=3

. —4-2 Z COS(an +) COS(mny +) Sin(anp;) (E]-E) [e -Be-tN _ e (-Bt')] (3.67)

me1 n=1
for ¢ > t,*.

Again, the sensitivity coefficients for all three effective parameters, thermal
conductivity perpendicular to the fibers (k,..p), thermal conductivity parallel to the fibers
(k,..p), and volumetric heat capacity (C.p), were then calculated by differentiating the
above temperature distributions with respect to each property. The sensitivity coefficients

for the thermal conductivity perpendicular to the fiber axis are given by

n=1 Bn Ef m=l n=i

X, =2L,,Y cos(Bx* {_i + [t + 1 e P ’)} + iEZCOS(an P
s-ett T

- cos(mmy ) sinGmaLy) [ |[@-1)1 - e29) + B2 ve 0
P2 \'mB (3.68)

forO< ¢ <*, and

x=eff

n=1

+ + — + 1 + :t‘) 1 + + [-B.¢°-)
X, = 2Ly cosBx) (| = + 17 [eP v (0o g) e
n

n

m=] n=1

4 R - + 1
EZ Y cos(B,x*) cos(mmy*) sin(mnL,,) (_m_E)

. [(D - D(eBewI e B & Bitre B - B¢t - 1))e [-B(t‘-.‘)]]
(3.69)
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for * > t,*. The dimensionless sensitivity coefficients for XC; and X;l were also

calculated; the solutions for 0 < " < t,* are given by

XC; = -2L,,Y  t*cos(Bx*) e P _chos(ﬁx Y]

n=l T =1 n=1

. [cos(mny *) sin(mnL,,) (LB) (—Bt *e (-Br'))]
m.

(3.70)
and
= _Ezcos([}x *) cos(mmy *) sin(mnL,,) (l)
m=1 n=1 mB
. [—D(l - eCBY) + m21t2L,;K e ('Bm]
(3.71)
and for " > t,*, by
X;, = 2% cosBr) [ - e D - e8] L Ay
n=1 m=1 n=1
+ + . + 1 + + _ [-B(t*-t)] +, (-Bt*
L) — |[B¢*-t ~ Bt'e B
l:cos(ﬁnx ) cos(mmy *) sin(mm pg)(mB)[ (t*-ty)e e ]] (3.72)
and
X;, = iz E cos(B,x*) cos(mmy*) sin(mnL,,) (_1_)
e m=1 n=1 mB
. [—D e[_B(,._;)] - eCE) 4 m21t2L2K tre B - (t’— t‘)e [-B(r_t.')]}
( ) Ko * ) (3.73)
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where B and D are given in Egs. (3.22) and (3.61), respectively.
Again, as in the one-dimensional analysis, the dimensionless sensitivity coefficients
for both configurations will be used in the optimization procedure to determine the

maximum determinant and the corresponding optimal experimental parameters.
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Chapter 4

Experimental Procedures

This chapter describes the experimental procedure used to estimate the thermal
properties of a continuous IM7 graphite fiber - Bismaleimide epoxy matrix composite
material. Although optimal experiments were designed for both one-dimensional
(isotropic) and two-dimensional (anisotropic) heat conduction, only the one-dimensional
experiment was conducted, allowing for the effective thermal conductivity perpendicular
to the fibers and the effective volumetric heat capacity to be estimated simultaneously.

As discussed previously in Section 3.2, the estimation procedure used in this study
is the modified Box-Kanemasu method. Recall that when using this method, experimental
temperatures must be recorded. To estimate the thermal properties independently, the
experiments must be transient and one of the boundary conditions must be a heat flux
(Beck and Amold, 1977). With these required conditions, the experimental assemblies
were designed accordingly. Discussed next are the experimental set-up and procedure

utilized.
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4.1  One-Dimensional Experiment for the Estimation of Thermal Properties

The experimental assembly for the one-dimensional analysis used to estimate the
thermal properties of the given composite material consists of a thin composite sample
subjected to a heat flux perpendicular to the fiber axis at one boundary and a known
constant temperature at the other boundary. Temperature measurements were then taken
at the flux boundary and were used in the estimation procedure. These experiments are

described in detail in the following subsections.

4.1.1 One-Dimensional Experimental Set-Up

The experimental design for one-dimensional heat conduction was composed of
two composite disks of approximately equal size, a resistance heater, eight thermocouples,
and two copper cylinders. The assembly was symmetrical consisting of, from the center
to the top, a thin resistance heater, two thermocouples, the composite sample, two
additional thermocouples, and a copper block. The composite sample was 4.77 cm in
diameter and 0.678 cm thick. The copper blocks, each with a height of 6.35 ¢cm and a
diameter of 5.08 cm, were used as heat sinks to attempt to attain the constant temperature
boundary condition while the resistance heater was used to provide the heat flux boundary
condition. All of the experiments were conducted at the National Aeronautics and Space
Administration - Langley Research Center, Aircraft Structures Branch (NASA-LaRC,ASB)
using the equipment available in their testing lab. All supplies required in the experiment,

such as the resistance heater and heat sink compound, were also supplied by NASA-
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LaRC. The carbon fiber-epoxy matrix composites were prepared and the thermocouples
(Type K) were fabricated by NASA-LaRC personnel. The data acquisition hardware and
software used in taking temperature, voltage, and current measurements had been
previously programmed. Therefore, only the assembly of the experimental apparatus
remained to be completed, with the details given next.

4.1.1.1 Experimental Set-Up Assembly
The one-dimensional experimental apparatus involved the following procedure:

1) Measure the thickness and diameter of two composite samples (Samples 1 and 2),
and the height and diameter of two copper blocks.

2) Coat one surface of a copper block with a thin layer of silicon heat sink
compound. Make sure the compound is smooth and evenly distributed. A flat
edge the width of the sample is useful to apply the coating with.

3) Place (2) thermocouples on top of the copper block layered with the heat sink.
The junction should be in the center of the samples and the two wires should be
parallel to each other and equidistance approximately 0.635 cm from the center of
the second axis. To keep the thermocouples in place, tape them down either to
the table or to the sides of the sample. Be sure to number the thermocouples so
that their position can be recorded (see Fig. 4.1).

4) Coat one surface of Sample 1 with a thin layer of silicon heat sink compound.
Again, be sure the compound is smooth and evenly distributed. Carefully place
the composite sample (coated surface down) on top of the copper block over the

thermocouples (see Fig. 4.2). Do not slide the composite sample on the block or
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Figure 4.1. Position of Thermocouples (T/C's) on Copper Block for the
One-Dimensional Experimental Design.
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Figure 4.2. Sample 1 Placed on Top of the Copper Block for the
One-Dimensional Experimental Design.
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5)

6)

7)

8)

9

10)

11)

the thermocouples will be moved. Make sure that the contact is good.

Coat the other side of Sample 1 and again, place two thermocouples at this surface
in the same manner as discussed previously.

Apply silicon grease to the heater on one side and place it on top of Sample 1.
Be sure the heater is placed symmetrically over the sample so the same magnitude
of heat flux is being distributed (see Fig. 4.3).

Coat the exposed top surface of the heater with the heat sink compound as
before and place two more thermocouples at this surface, as described previously.
Coat Sample 2 (of approximately the same thickness as Sample 1) with silicon
grease and place it on top of the exposed heater surface, over the thermocouples.

Coat the opposite side of Sample 2, place two more thermocouples as before on
the surface, and finally, place a coated copper block over the composite sample
(see Fig. 4.4).

Wrap the exposed sides of the composite material with rope insulation. Four
pieces were used, two on each composite. If any thermocouple wire is exposed,
tuck it inside of the insulation (see Fig. 4.5).

Carefully place the stacked samples between two plates and apply pressure evenly
over the surface, taking care not to break the thermocouples. If thermocouples
break, use less pressure. (Note, pressure was applied through threaded rods which

ran through the corners of the plates).
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Figure 4.3. Position of the Heater and Thermocouples (T/C's) at the Heat Flux
Boundary Condition for the One-Dimensional Experimental Design.
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Figure 4.4. Final Assembly of the Experimental Apparatus for the One-Dimensional
Experimental Design with Eight Thermocouples (T/C's).
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Figure 4.5. Insulation Wrapped Around the Heater and Composite Samples
for the One-Dimensional Experimental Design.
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4.1.1.2 Experimental Procedure

The experimental procedure consisted of applying a heat flux to a composite

sample already at steady-state and then measuring the resulting temperatures using the

data acquisition system. The process used for these experiments is given as follows:

1)

2)

3)

Place the press containing the experimental set-up inside a temperature controlled
oven. Connect the thermocouple wire to leads leading to a temperature
compensator and data acquisition system. Heat the oven to the desired ambient
temperature and allow the instrumented samples to equilibrate.

Activate the data acquisition system. Turn on the heater and simultaneously record
temperature (mvolts) from thermocouples, and measured voltage and current to the
heater. Turn the heater off after a pre-determined heating time and continue
recording measurements until a pre-determined experimental time has elapsed.
If desired, the experiment can be repeated after the samples have again come to
equilibrium with the oven temperature or the oven temperature can be changed and

steps 1 and 2 can be repeated.

In these experiments, temperatures were recorded using eight Type K

thermocouples at (.5 second intervals up to a predetermined experimental time. All

experiments were conducted at room temperature with the heater being applied for a

predetermined heating time. (These times were determined using the optimal design

criterion discussed previously). Experiments were conducted using three different voltage
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inputs to the heater; 4.9V, 6.1V, and 7.3V. These resulted in maximum temperature rises
of approximately 2°C, 3°C, and 4.5°C, respectively, over the initial temperature.

As mentioned, a one-dimensional heat conduction process through the composite
sample was assumed. This assumption may introduce experimental error into the
problem. However, to verify the validity of this assumption, the resistance to heat
transfer was calculated both parallel and perpendicular to the direction of heat transfer.
For one-dimensional heat conduction to be assumed, the parallel resistance should be
much smaller than the perpendicular resistance, indicating that most of the heat will be
conducted in one direction. To calculate the resistance in the direction of heat transfer,
where only conduction through the sample is considered, the following equation was used:

L
= u (4.1)

R
cond kx_e ﬁAx

where A, is the cross-sectional area normal to the direction of heat transfer, k. is the

effective thermal conductivity parallel to the direction of heat transfer and L, is the
thickness of the sample. For the resistance perpendicular to the direction of heat transfer,
both conduction through the insulation material and convection with the air must be

considered. The convective resistance is given as

=1 4.2)

RCO’IV
hA
where h is the convective heat transfer coefficient. As an extreme case, this resistance
was calculated using a # of 10 W/m?°C. This indicates that heat is lost through the

insulation by convection to the surrounding air. Since the experiments were conducted
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at room temperature, this 2 value is a good approximation for natural convection
situations, as may be the case in this experiment. A thermal conductivity of 0.05 W/m°C
was assumed for the insulation material used.

When performing these calculations, is was found that the resistance parallel to the
direction of heat transfer is 7.3 °C/W while the resistance normal to this direction is 220
°C/W. Since the perpendicular resistance is much larger than the parallel resistance, the

one-dimensional heat conduction assumption is valid.
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Chapter 5

Results and Discussion

This chapter focuses on the results obtained for the optimal experimental design
procedure for both the one-dimensional and two-dimensional analyses. In both cases, the
experimental parameters were optimized using the technique described in Section 3.3.
The thermal property estimates, effective thermal conductivity perpendicular to the fibers
and effective volumetric heat capacity, obtained for the IM7 graphite fiber - Bismaleimide
epoxy matrix composite are also discussed. These thermal properties were estimated
using both the parameter estimation program, MODBOX, which requires an exact
temperature solution and the finite element software, EAL, where the temperature solution
is calculated numerically. In both cases, the properties were estimated using the modified
Box-Kanemasu method described in Section 3.2.

The first and second sections of this chapter discuss the optimal experimental
results obtained for the one-dimensional analysis and the estimated thermal properties
found utilizing this design, respectively, while the last section discusses the optimal

experimental results obtained for the two-dimensional configurations.
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5.1  Results Obtained for the One-Dimensional Analysis (Isotropic Composite
Material)

The thermal properties estimated for the one-dimensional analysis include the
effective thermal conductivity perpendicular to the fiber axis, or the isotropic thermal
conductivity, and the effective volumetric heat capacity. As mentioned in Section 3.2,
measured temperatures were required for this estimation procedure; therefore, experiments
had to be conducted. The next subsections discuss the results obtained for the
optimization procedure used to determine the optimal experimental parameters utilized in
these experiments. This includes an analysis of the sensitivity coefficients and the
determination of the following experimental parameters: the heating time of the uniform

heat flux, the temperature sensor location, and the total experimental time.

5.1.1 One-Dimensional Optimal Experimental Design

The minimization procedure used in this analysis to estimate the effective thermal
properties is the Box-Kanemasu method. This method requires both measured and
experimental temperatures. The experiments used to obtain the measured temperatures
were optimized to provide more accurate property estimates. The optimization technique
selected in this study, as discussed in Section 3.3, maximizes the determinant of the
product of the dimensionless sensitivity coefficients and their transpose. Therefore, the
first step in the optimization procedure is to calculate and analyze the sensitivity

coefficients for each property. These coefficients are discussed next.
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5.1.1.1 Sensitivity Coefficient Analysis

The first step in the optimization procedure was to calculate and plot the sensitivity
coefficients. Recall that these coefficients are the derivatives of the temperature with
respect to the unknown thermal properties and indicate the sensitivity of the temperature
response due to changes in the parameters. In order for the thermal properties to be
independently and accurately estimated, these coefficients should be large in magnitude
(on the order of the temperature rise) and linearly independent. If the sensitivity
coefficients are small, not enough information is available for the estimation procedure
and if linear dependence exists between them, the parameters cannot be independently
estimated. It is important to note, however, that the sensitivity coefficients may be
linearly dependent over one range but independent over a different range. Knowing these
ranges will help optimize the physical experiment.

The dimensionless sensitivity coefficients for the isotropic analysis are given by
Egs. (3.52-55). Figures 5.1 and 5.2 show the dimensionless sensitivity coefficients for

the effective thermal conductivity (Xk;’) and effective volumetric heat capacity (XC;),

respectively, at various positions within the composite. In Fig. 5.1, it is seen that after
a dimensionless time of approximately three, all of the coefficients converge to a constant
value. This indicates that temperature measurements taken beyond this dimensionless
time supply little additional information for the estimation of k, . This same result also
occurs for the effective volumetric heat capacity sensitivity coefficients (Fig. 5.2). Here,

after a dimensionless time of approximately three, the coefficients converge to zero. To
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more accurately estimate C,g, the majority of the temperature measurements should be
taken over the dimensionless time range of zero to three, where the magnitude of the
sensitivity coefficients is largest. It is apparent from these figures that the coefficients
with the largest magnitude occur at a dimensionless x* (defined as x/L,) location of zero.
This position corresponds to the heated surface in this analysis. However, it is also

evident that the X, have a larger magnitude than those for Xc_ . This indicates that the

temperature data provides more information about &, than it does for C.p and therefore,
the estimates of k, . Will be more accurate than those for C,p

It should be noted that the sensitivity coefficients in Figs. 5.1 and 5.2 were
calculated with the heat flux applied for the entire duration of the experiment. Because
the volumetric heat capacity coefficients approach zero, it suggests that a better scheme
may consist of applying the heat flux for a finite duration instead of for the entire
experimental time. This confirms that observing the sensitivity coefficients can give
insight into the accuracy of the experimental design.

As mentioned, if the sensitivity coefficients are linearly dependent, the thermal
properties are correlated and cannot be simultaneously estimated. One way to determine
if linear dependence exists is to plot the ratio of the sensitivity coefficients, as shown in
Fig. 5.3 for an x* location of zero. In this figure, the ratio was plotted between the
dimensionless time range of zero to three. (After this range, the volumetric heat capacity
sensitivity coefficients converge to zero and the ratio becomes insignificant). If a constant

curve occurs, the coefficients are linearly dependent. However, as evident from Fig. 5.3,
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ty = 22 (5.1

For this study, the thickness of the sample, L,, was 6.78 mm. However, to determine o,
k. .yand C,;are required, which are the unknown parameters being estimated. Therefore,
the actual heating time can be estimated by using previous estimates of k. .r and C,q of
other similar carbon-epoxy composite materials. The previous estimates used in this study
were obtained from Scott and Beck (1992a). Using these values, the optimal heating time
was calculated to be approximately 180 seconds. This value can be updated by
conducting the experiments, obtaining new estimates for k..y and Cq recalculating the
heating time using these new estimates, and repeating the process in an iterative procedure
until the thermal properties no longer vary. However, as mentioned, a flat peak exists
between heating times of 2.0 and 2.5. Therefore, the optimal heating time does not have

to be precise to obtain the most accurate thermal property estimates.

5.1.1.3 Optimal Temperature Sensor Location

Next, the optimal temperature sensor location was determined by plotting the
determinant as a function of heating time for various sensor locations (Fig. 5.6). It was
found that the determinant is maximized when the sensor is located at the heated surface
(x* = 0.0). This result is consistent with the sensitivity coefficients shown in Figs. 5.1
and 5.2, where the coefficients with the largest magnitude occurred at the heated surface.
Note that by placing additional thermocouples at other positions within the composite will

be redundant and will not supply more information for the estimation procedure.
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5.1.1.4 Optimal Experimental Time

The last parameter that was determined was the optimal experimental time. In
order to see the effect of added data to the value of the determinant, D*, the determinant
was calculated from Egs. (3.42) and (3.43) using the optimal heating time and sensor
location previously found, but without averaging the integral contained in Eq. (3.43) over
time. The results are shown in Fig. 5.7; here, it is evident that after a dimensionless time
of approximately five, the determinant no longer changes significantly. This implies that
after this dimensionless time, the temperature is reaching its initial state and little
additional information is being provided for the estimation of the thermal properties.
Therefore, the experiments can be concluded after a dimensionless time, ty', of
approximately five. Note that this is a conservative choice, however, and from Fig. 5.7,
a smaller value, such as four, could have also been chosen. Again, the actual
experimental time that ;" represented was found by using the definition of #y* (Eq.
(3.44c)) and the previous estimates for k.. and C.; (Scott and Beck, 1992a). The
experimental time calculated for this study was approximately 8 minutes. However, when
examining the measured temperatures obtained from the experiments, it is seen that its
initial state (a dimensionless value of zero) is reached after approximately five to six
minutes, indicating that no new temperature information is being supplied. This
corresponds to a dimensionless experimental time of three to four, again showing that a

ty" of five is a conservative value.
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5.1.1.5 Sensitivity Coefficient Using the Optimal Experimental Parameters

To illustrate the optimal results, the sensitivity coefficients were re-calculated using
these optimal experimental parameters and are shown in Fig. 5.8 at an x* location of zero.
As one can see from this figure, more information used to estimate the thermal properties
is supplied when the heater is applied for the determined optimal heating time rather than
over the entire experimental time. This occurs because when the heater is applied for the
entire duration, steady-state values are reached early on and information is no longer
available for the estimation of C,. However, when turning the heater off during the
experiment, a new transient response is introduced which results in additional temperature

information for the estimation procedure.

5.1.2 Estimation of Thermal Properties for Isotropic Materials

The thermal properties, effective thermal conductivity perpendicular to the fiber
axis and effective volumetric heat capacity, were estimated for an IM7 graphite fiber -
Bismaleimide epoxy matrix composite both analytically, using the program MODBOX,
and numerically, utilizing the finite element software, EAL. In both cases, the modified
Box-Kanemasu method was used in the estimation procedure. The properties were
estimated using both experimental data and numerical and exact solutions so that the two
could be compared and verification of the accuracy of EAL could be made. The
estimated thermal properties obtained for the one-dimensional analysis are given in the
following two subsections. In this analysis, the optimal experimental design previously

determined was utilized to record the experimental temperatures required.
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5.1.2.1 Estimated Thermal Properties Using an Exact Temperature Solution

The thermal properties, effective thermal conductivity perpendicular to the fiber
axis and effective volumetric heat capacity, were estimated from an exact temperature
model (Egs. (3.8) and (3.9)) using the sequential, non-linear estimation program
MODBOX. The estimates that were obtained for three repeated experiments are given in
Table 5.1, along with their 95% confidence intervals. The confidence intervals for each

estimated parameter, b,, were approximated by

S

b + P
i [”(N _p)

")
] t o = P) (5.2)
where p is the number of parameters estimated, N is the number of data points measured,
P is the ith diagonal of the P matrix (Eq. (3.37)) which represents the variance of the
parameter, S is the sum of the squared residuals, and ¢,,(N-p) is the value of the t
distribution for (I-0/2) confidence region and (N-p) degrees of freedom (Beck and
Arnold, 1977). In this study, a considerable number of temperature measurements were
taken and used in the estimation procedure; therefore, only a slight variance in the
estimates would be expected. This is in fact the case, as shown by the small confidence
intervals for each property estimate in Table 5.1. It is also seen that the confidence
intervals for k, ., were smaller than those for C,; This implies that the estimates fqr ky s
are more accurate than for C,. This is consistent with the sensitivity coefficients (Figs.
5.1 and 5.2), where the magnitude of the effective volumetric heat capacity sensitivity

coefficients is less than that of the effective thermal conductivity. Therefore, the
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estimation of C,; is more sensitive to experimental errors and will not be as accurate as
estimates for k, 4

The mean value of the thermal property estimates was also calculated, along with
its 95% confidence interval. In this case, the 95% confidence intervals were obtained

from

(5.3)

=

where b, and s are the mean and standard deviation of the estimate, respectively, N is
the number of data points used, and ,, is the value of the t distribution with (N-1)
degree$ of freedom and o/2 confidence region (Walpole and Myers, 1978). As seen in
Table 5.1 for all three experiments, the property estimates fall within the 95% confidence
intervals of the mean values.

To determine how accurately the calculated temperatures matched the measured

temperatures, the Root Mean Square (RMS) error was also computed where

Y@, - Ty

RMS = | 54
5 (5.4)

Here, T, and Y, are the calculated and measured temperatures, respectively, at the ith time
step, and N is the total number of temperature measurements. The RMS values were
calculated two different ways. First, the measured temperatures for each individual
experiment were compared with calculated values using the thermal properties estimated

for that experiment; these values are indicated by RMS, in Table 5.1. The RMS values
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were then determined using the experimental temperatures and calculated temperatures
determined using the mean thermal property values (also shown in Table 5.1); these
values are indicated by RMS,,.

To demonstrate the validity of the estimated properties, the calculated temperatures
obtained using the estimated effective thermal conductivity and effective volumetric heat
capacity values were compared with the measured temperatures for Experiment 3 in Fig.
5.9. As one can see, there was very good agreement between the calculated and
measured temperatures which indicates that the estimated values are reliable.

The significance of the RMS,, values, or the errors resulting from using the mean
Table 5.1 Estimated effective thermal conductivity, &, and volumetric heat capacity,

C,p from Experiments 1, 2, and 3, using exact temperature solutions along

with the Root Mean Square error calculated from individual and mean thermal
property estimates (RMS,; and RMS,,).

Mean

ke (W/m°C) 0.518 + 0.028

C.; MJ/m*°C) 1.474 + 0.111

RMS, (°C)
% Maximum
Temperature Rise

RMS,, (°C)
% Maximum
Temperature Rise
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thermal property estimates, was demonstrated by plotting the temperatures calculated
using the mean thermal property estimates against each set of experimental data in Fig.
5.10. From this figure, it is evident that in each case, the calculated temperatures closely
match the measured temperatures. Furthermore, in comparing Table 5.1 with Fig. 5.10,
the slight under prediction of temperature in Experiment 2 and the slight over prediction
of temperature in Experiment 3 can be attributed to the small differences between the
individual estimated effective thermal conductivity and the mean value, with the thermal
conductivity estimate for Experiment 2 being slightly under the mean and the value for
Experiment 3 being slightly over the mean value. However, even with these slight
variations, the RMS,, as a percentage of the maximum temperature rise for each run was
less than 0.5%, as shown in Table 5.1. This indicated that for all three cases, the mean
values provided reasonable estimates of the true thermal property values. It also indicates
that the model used to describe this heat conduction process, as well as the experimental
design used to obtain the temperature data, are satisfactory.

The estimate obtained for the effective thermal conductivity was compared with
results obtained at NASA-LaRC using a cut-bar comparative apparatus (Dynatech, model
number TCFCM-N4). This device operates by supplying a steady state heat flow in one
dimension across the composite sample and the same heat flow through a known standard
material. The temperature difference across the standard material allows for the
determination of the heat flux, while the temperature difference across the sample gives
the value of the effective thermal conductivity. Using this apparatus, experiments were

conducted on three composite samples that were the same type studied in this analysis.
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The average result obtained for these three composite samples for the thermal
conductivity was 0.473 + 0.038 W/m°C. This is approximately a 9% difference from the
average k, ., estimated in this study. However, these experiments were conducted at
40°C, whereas in this investigation, the experiments were performed at room temperature;

therefore, an exact comparison cannot be made.

5.1.2.2 Estimated Thermal Properties Using a Numerical Temperature Solution

The thermal properties were also estimated using EAL, where the temperatures
were calculated numerically. Again, the modified Box-Kanemasu estimation technique
was employed. The results obtained for the estimated effective thermal conductivity
perpendicular to the fibers and effective volumetric heat capacity for the three
experiments are shown in Table 5.2, along with the % difference from the estimates
obtained using the exact temperature solutions. This % difference is defined as

Beu = Ben x 100% (5.5)

Brcae

where B is the parameter being estimated. As one can see from Table 5.2, the estimates
found using EAL closely match those obtained using exact temperature models with a
percent difference of less than 1% occurring. The effective volumetric heat capacity
estimates had the largest percent differences and resulted because this property is more
difficult to estimate than the thermal conductivity. As mentioned, this occurs because the
magnitude of the sensitivity coefficients for C,; are less than those for k, . causing the

estimation of C,,to be more sensitive to experimental errors and to not be as accurately
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Table 5.2 Estimated effective thermal conductivity, £, ., and volumetric heat capacity,
C.p from Experiments 1, 2, and 3, using numerical temperature solutions
(from EAL) along with the % difference from estimates calculated using exact
temperature models.

Ky oy (W/m°C)
% Difference

Ceﬂ(MJ/m“C)
% Difference

estimated as k,

From Table 5.2, it can be concluded that the estimated parameters found using the
finite element software, EAL, are quite accurate and provide reasonable estimates of the
true thermal property values.

To verify the accuracy of the temperature solution found using EAL, based on the
estimated parameters, the temperature profile was plotted along with the temperature
distribution calculated using an exact analytical solution, as shown in Fig. 11. Here, it
is seen that the two curves are essentially equal, and therefore, using EAL provides
reliable temperatures. This is also shown by calculating the RMS value, as given in Eq.
(5.4), where Y; is the temperature calculated from an exact solution and T is the
temperature calculated from EAL. For the experiment shown in Fig. 5.11, the RMS value

was only 0.27%, again indicating the accuracy of EAL.
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5.1.2.3 Sequential Parameter Estimates

Viewing the sequential parameter estimates can give insight on the validity of the
mathematical model used to represent the heat conduction process and the resulting
experimental design. The sequential estimates for the converged values of the thermal
conductivity and volumetric heat capacity for Experiment 3 are plotted in Fig. 5.12; these
estimates were obtained using exact mathematical models. From this figure, it is evident
that each estimate fluctuated greatly towards the beginning of the experiment. This
occurred because the heat flux had just been activated and not enough temperature
information was available for the estimation procedure. However, after approximately
400 seconds which corresponds to a dimensionless experimental time of approximately
three, the estimates for both the thermal conductivity and volumetric heat capacity are
constant, indicating that additional data would have provided little additional information
for the estimation of these parameters. This also indicates that the heat conduction model
is satisfactory and the optimal experimental time of five is indeed a conservative value,

as discussed previously.

5.2  Results Obtained for the Two-Dimensional Analysis (Anisotropic Composite
Material)

For the two-dimensional analysis, three properties can be estimated simultaneously:
effective thermal conductivity perpendicular to the fiber axis (k,.,), effective thermal

conductivity parallel to the fiber axis (k,.y), and effective volumetric heat capacity (C,p).
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In this investigation, these thermal properties are not estimated; however, the experimental
designs used to obtain the temperature data required for the estimation procedure are
optimized, as in the one-dimensional analysis. Discussed next are the results obtained for

these optimal experiments.

5.2.1 Two-Dimensional Optimal Experimental Designs

Two different two-dimensional experimental configurations were analyzed in this
study, each containing different boundary conditions. The experimental parameters for
both configurations were optimized by maximizing the determinant of the product of the
sensitivity coefficients and their transpose. The maximum determinant values for both
configurations were then compared to determine which design would be the best choice;
the configuration with the largest determinant value would give the most accurate
property estimates. Recall that both configurations had a uniform heat flux imposed over
a portion of one boundary with the remainder of the boundary insulated. In addition,
Configuration 1 had known, constant temperatures at the remaining three boundaries,
while the second configuration had a constant temperature at the boundary opposite to the
flux boundary and insulated conditions at the remaining two boundaries. (For clarity,
these configurations are again shown in Figs. 5.13 and 5.14). Therefore, in addition to
the optimal parameters determined for the one-dimensional case, the optimal position of
the heat flux was also determined for both configurations. Because of the different
boundary conditions used, the optimal experimental parameters for each design will not

be identical. For example, the portion of the boundary that the heat flux should cover
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will vary between the two configurations, and therefore, must be determined for each
individual design. The optimal parameter results for both configurations are discussed
in the following two subsections. These include the optimal heating time, optimal
temperature sensor location, optimal heat flux position, and optimal experimental time.
In addition, the sensitivity coefficients for both configurations are analyzed for insight into
the experimental design and to determine if possible correlation exists between the
thermal properties. The two configurations are then compared to determine which will
provide more accurate property estimates, and finally, the last subsection discusses the

optimal values for various composite dimension (L,,) and thermal conductivity (X,,) ratios.

52.1.1  Optimal Experimental Parameters Determined for Configuration 1

Using Configuration 1, it was desired to select the experimental parameters which
maximize the sensitivity of the temperature with respect to all of the unknown thermal
properties. The same technique was used as in the one-dimensional optimization
procedure, only now, the required maximum temperature value (7,,,.") was redefined as
the temperature attained at steady state. This 7,,* was used because it represents the
actual maximum temperature that could be reached for this particular design.

To perform the optimization procedure, the temperature solutions and sensitivity
coefficients require predetermined values for L, (L /L)) and X, (k, 4k, 5. The value
chosen for L, in this analysis corresponds to the size (0.49 cm x 10.16 cm) of an existing
composite sample that can be used in the experiments to determine the temperatures
needed in the estimation procedure, while the value for x,, was taken from previously
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measured effective thermal conductivities parallel and perpendicular to the fiber axis of
similar carbon-epoxy composite samples (Loh and Beck, 1991). The specific values used
were L, = 0.048 and x,, = 7. However, to allow the optimization procedure to be
applicable to other composite dimensions or effective thermal conductivity ratios, optimal
experimental parameters were also calculated for all possible combinations of L, s equal
to 0.5 and 1.0, and x,’s equal to 1 and 1/7. This results in a total of nine combinations.
The results for the combination discussed above (L, = 0.048 and x,, = 7) will be
examined the most thoroughly, however, since these are the actual conditions of an
existing composite sample that can later be utilized in the experimental designs to
estimate the thermal properties.

In performing the optimization procedure for L,, = 0.048 and K, = 7, five
parameters were optimized: the dimensionless portion of the boundary that the heat flux
is applied, L,,", the dimensionless location (x,*,y,*) of the temperature sensor, the
dimensionless heating time, #,*, and the dimensionless experimental time, ¢,*. Note that
the optimal experimental time is not as important as the other four parameters. Therefore,
the optimal procedure used to determine x,*, y,*, L,,*, and #,* did not take into account
the optimization of #;* (this value was determined last).

The most accurate way to determine the optimal value for each parameter is to
differentiate the determinant given in Eq. (3.45) with respect to each of the experimental
parameters and set it equal to zero, resulting in four equations and four unknowns. These
equations can then be solved simultaneously, allowing for the desired optimal parameters
to be determined. However, this method is not practical due to the complexity of the
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equations involved. Therefore, an iterative scheme was developed where a program was

used to vary each of the four parameters individually (excluding ¢,*). This iterative

procedure consists of two phases; the first phase includes determining the general range

of the optimal values, while the second phase narrows this range to determine the optimal

experimental parameters more precisely. In phase one, the following procedure was used:

1)

2)

3)

4)

5)

6)

7

Fix x.*, y,*, and L, ;* to their starting values (0.0, 0.0, and 0.1, respectively).
Vary #,* from 0.05 to 5.0 by 0.05. For each ¢,*, calculate the determinant, D*, as
a function of time, #*.

Determine the maximum determinant value, D,,,*, for each of the determinant
curves generated in step 2 for each ¢,*.

Compare the maximum determinant values found for each #,* and record the one
with the largest magnitude, along with its corresponding heating time, #,*.
Holding y,* and L, ,* constant at their original values, vary x,* and repeat steps 2
through 4. Note, x,* was varied from 0.0 to 1.0 by 0.1 increments.

After the x,* loop is completed, change y,* to its new value (increment the previous
value by 0.1) holding L, ,* fixed and again repeat steps 2 through 5. Note, y,* was
varied from 0.0 to 1.0 by 0.1 increments.

Finally, change L,,* to its new value (increment the previous value by 0.1) and

repeat steps 2 through 6 in the designated order.

This procedure then provides a maximum determinant value for all combinations of x,,

¥, and L, ,*, with the corresponding #,*. From this data, the general region of the actual
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maximum determinant can be determined. Phase two then involves refining the grid sizes
for the parameters in this region to determine the D,,,,* location more precisely. Since
there is more than one parameter that can vary, the procedure is more complex than the

one-dimensional analysis, and must be iteratively updated.

5.2.1.1.1 Optimal Temperature Sensor Location on the x* Axis

The first optimal parameter determined was the temperature sensor location along
the x* direction. Recall from the experimental configuration (Fig. 5.13) that this is the
direction parallel to the heat flow. From the one-dimensional analysis, it was determined
that the optimal location to place the sensor was at the heated surface. Therefore, the
same result would be expected for the two-dimensional analysis. This was in fact the
case, with the maximum determinant always occurring at a x,* location equal to zero (or
at the heat flux boundary) for all combinations of L,," and y,*. This result is reasonable
because the maximum determinant occurs when the sensitivity coefficients are the largest,
or when the greatest temperature variation occurs. Since the temperature of the composite
is initially at a dimensionless value of zero, then at the boundary where the uniform heat
flux is applied would be the location where the largest temperature gradient in the x*

direction would occur.

5.2.1.1.2 Optimal Temperature Sensor Location on the y* Axis
The next parameter chosen to optimize was the sensor location along the y* axis.
After calculating the maximum determinant value for each x,*, y,*, and L, ,* combination
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and determining that the optimal sensor location along the x* axis was at the heated
surface, it was found that the true maximum determinant (the largest value of all of the
maximum determinants for each combination) was in the general region of y,*=0.1,
L,,;*=1.0, and #,*=1.35. However, it should be noted that for all L,," locations, the
maximum determinant always occurred at y,* equal to 0.1 with a #,* of approximately
1.35. Using the optimal values of L, ,*=1.0 and #,"=1.35, the grid size for y,* was refined
around 0.13, using a range from 0.05 to 2.0, to determine the optimal y,* location more
precisely. Using this refined range, the maximum determinant occurred at a new y,*
location of 0.13, as shown in Fig. 5.15, where the maximum determinant values for
various y,* locations are plotted (again, using L, ,*=1.0 and #,*=1.35). It should be noted
that when the heat flux is applied across the entire boundary (L, ,'=1.0), the problem
becomes symmetric. Therefore, a y,* of 0.87 would also be an optimal location, resulting

in the same maximum determinant value as for y,* equal to 0.13.

5.2.1.1.3 Optimal Heating Time

The next parameter determined was the optimal heating time. Using the optimal
location for y,* found above of 0.13 and the corresponding L, ,* of 1.0, the dimensionless
heating times were varied around the previously determined optimal value of £,*=1.35
(ranging from 0.05 to 2.0). The maximum determinant then occurred at a new ,* of 1.4,
as seen in Fig. 5.16, where the maximum determinants are plotted for various ¢,* values.

As mentioned, since more than one parameter can vary, determining the optimal
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parameters for the actual maximum determinant becomes an iterative process. Therefore,
since a new #," was determined, the y,* values were again varied over the same range
(0.05 to 2.0) using the new heating time of 1.4 (and the previously calculated optimal
value for L, ;* of 1.0) to see if its optimal value changed. However, as seen in Fig. 5.17,

changing the heating time from 1.35 to 1.4 did not alter the optimal y,* value of 0.13.

5.2.1.1.4 Optimal Heat Flux Location, L,,*

Using the optimal parameters determined of x,"=0.0, y,*=0.13, and #,*=1.4, the
position of the heat flux, L,,*, was then varied from 0.6 to 1.0 to see if the previous
optimal location of L,,"=1.0 changed when using these new y," and #,* values. This
result is shown in Fig. 5.18. As seen in this figure, the maximum determinant occurred
at a L,,* location of 1.0, as obtained previously. This indicates that the optimal design
for Configuration 1 consists of having the heat flux applied over the entire boundary.
However, it is evident that the curve in Fig. 5.18 is rather flat when the heater is applied

over 70 to 100% (0.70 to 1.0) of the boundary, and therefore, any value in this range

could be used to obtain the same accuracy in the property estimates.

5.2.1.1.5 Optimal Experimental Time

Finally, the last parameter determined was the optimal dimensionless experimental
time, #y*. This was calculated using the same procedure as for the one-dimensional
analysis, where the dimensionless determinant, D*, was calculated from Eqgs. (3.42) and
(3.43) using the optimal parameters determined for x,*, y,*, L, ", and #,", but without
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averaging the integral contained in Eq. (3.43) over time. The results are shown in Fig.
5.19; here, it is evident that after a dimensionless time of approximately 4.0, the
determinant no longer changes significantly. This implies that after this dimensionless
time, the temperature is returning to its initial state (a dimensionless value of zero) and
little additional or no information is being provided for the estimation of the thermal
properties. Therefore, the experiments can be concluded after a dimensionless time, ty*,
of approximately 4.0. Again, however, as in the one-dimensional case, this is a

conservative choice, and a smaller value, such as 3.5, could have also been chosen.

5.2.1.1.6 Verification of the Optimal Temperature Sensor Location of the x* Axis

To verify the optimal location of the temperature sensor along the x* direction, for
which a value of zero was determined, the dimensionless determinant was calculated
using the optimal values for y,*, L,,*, and ¢#," for various x,* locations. The results are
plotted in Fig. 5.20 against dimensionless time. As seen from this figure, the maximum
determinant occurred when the sensor was at the heated surface (x,* = 0.0), confirming

the optimal result obtained for the x,* location.

5.2.1.1.7 Maximum Determinant Using the Optimal Experimental Parameters

In summary, the above optimization procedure resulted in the following optimal
experimental parameters for Configuration 1: x,*=0.0, y,'=0.13, L, ,*=1.0, and ¢,*=1.4.
Using these optimal experimental parameters, the dimensionless determinant, D*, was
plotted versus dimensionless time, where a maximum of 5.36 x 107 occurred, as shown
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in Fig. 5.21. The reason why these determinant values are less than those obtained for
the one-dimensional case is because D* is now a 3 x 3 determinant, as given in Eq.
(3.45). Since the sensitivity coefficients are of the same order of magnitude for both the
one-dimensional and two-dimensional cases, then multiplying three coefficients together,
as required in the 2-D determinant, will result in smaller maximum determinant values

than multiplying only two coefficient values, as in the 1-D determinant.

5.2.1.1.8 Temperature Distributions for Configuration 1

Using the optimal values for x,* and L,,*, temperature was plotted for various y,*
locations for four different dimensionless times: early (0.1), intermediate (two at 0.5 and
1.4), and steady state (4.0) (Fig. 5.22). Note that these temperature distributions were
calculated with the heat flux applied for the entire experimental time, t,*. The desired
optimal values occur when the determinant is a maximum, or when the sensitivity
coefficients are the most sensitive to temperature changes. This typically occurs when
the temperature gradient is large. As seen from this figure, at and near the optimal y,*
location of 0.13, the temperature gradient is steep with respect to y,*, and therefore, the
sensitivity coefficients for k. are expected to be large in magnitude. This steep gradient
occurs because the composite sample is heated, however, the temperatures at the
boundaries are held constant, resulting in a large temperature variation. However, it is
also seen that the optimal y,* location is not at the steepest temperature gradient. This
results because the maximum determinant occurs when the product of the sensitivity

coefficients for all three parameters is the largest in magnitude, which is not necessarily
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at the largest temperature gradient in the y* direction.

The temperature distribution was also calculated as a function of time using the
optimal experimental parameters determined above (see Fig. 5.23). As shown in Fig.
5.23, the heat flux is terminated as the temperature approaches steady state (¢,*=1.4).
This is consistent with Fig. 5.22, where applying the heat flux for the dimensionless time

of 1.4 results in temperatures close to the steady state temperatures attained at #*=4.0.

5.2.1.1.9 Sensitivity Coefficients Calculated Using the Optimal Experimental Parameters
_Using the optimal experimental parameters determined, the dimensionless
sensitivity coefficients for the three effective thermal properties, ke ky.eqn and C,q were
calculated and plotted as a function of dimensionless time, as shown in Fig. 5.24. Here,
it is seen that the sensitivity coefficients for k. and C, are relatively large in magnitude,
being on the same order as the temperature rise, with the k. .y coefficients being the
largest. The sensitivity coefficients for k, . have the smallest magnitude of all three. It
is also seen that after a dimensionless time of approximately four, all of the coefficients
converge to zero, indicating that temperature measurements taken beyond this time supply
little additional information for the estimation procedure. This result is consistent with
the temperature distribution (Fig. 5.23), where its initial state was attained after this
dimensionless time. Therefore, no new temperature information is being provided and
the estimation procedure is complete. This result is also consistent with the determined
optimal experimental time, where after a #,* of 4.0, the determinant no longer varied.
Since the sensitivity coefficients for k, - have a larger magnitude than the
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coefficients for k., and C,; it implies that the temperature data are supplying more
information for the estimation of £, ., than k, .- and C, As a result, the estimated values
obtained for k,; can be regarded as the most accurate of the three parameters, resulting
in the smallest confidence intervals.

As mentioned in the one-dimensional case, it is important to plot the sensitivity
coefficients to see if they are correlated. If correlation occurs, the thermal properties
cannot be estimated independently. From Fig. 5.24, it is evident that the C,; sensitivity
coefficient, which changes from negative to positive values, is not correlated with either
the k., or k, - coefficients, which are always negative. However, this observation is not
as apparent between the k- and k, - sensitivity coefficients. If they are correlated, then
only the ratio, X,,, can be estimated. Therefore, to test for possible correlation, the ratio

of X, /X, was calculated and plotted as a function of dimensionless time (Fig. 5.25).

If a straight line occurs, the two parameters are correlated. However, as evident from Fig.
5.25, the line is far from linear, and therefore, k. and k., can be estimated

simultaneously.

5.2.1.2 Optimal Experimental Parameters Determined for Configuration 2

Recall that Configuration 2 consisted of a uniform heat flux imposed over a
portion of one boundary, with the remainder of the boundary insulated. The boundary
opposite to the flux boundary was maintained at a known constant temperature, and the

remaining two boundaries were insulated (Fig. 5.14). Again, for this configuration, it was
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desired to select the experimental parameters which maximize the sensitivity of the
temperature with respect to all of the unknown thermal properties. Since the same
composite samples will be used in the experiments for both Configurations 1 and 2, the
result for a L, of 0.048 and a x,, of 7 (Loh and Beck, 1991) will again be the most
thoroughly analyzed. However, as in the Configuration 1 case, all possible combinations
of x,, equal to 1 and 1/7, and L, equal to 0.048, 0.5, and 1.0 will also be performed. The
same optimization procedure, as discussed in Section 5.2.1.1 for Configuration 1, was
used and similar experimental parameters were optimized (x*, y,*, L,,", %%, and ).

These experimental parameter results are discussed next.

5.2.1.2.1 Optimal Temperature Sensor Location on the x* Axis

The first optimal experimental parameter determined was the temperature sensor
location along the x* axis. Again, as in Configuration 1, the maximum determinant
always occurred at a x,” location equal to zero (or at the heated surface) for all
combinations of y,* and L,,". This occurs for the same reason as discussed in Section
5.2.1.1.1, where the largest temperature gradient in the x* direction occurs at the heated

surface.

5.2.1.2.2 Optimal Temperature Sensor Location on the y* Axis and Heat Flux Position

The next parameters that were optimized were the sensor location along the y* axis
and the position of the applied heat flux, L,,". After calculating the maximum
determinant for each x,*, y,*, and L, ,* combinations, the true maximum determinant (the
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largest value of all of the maximum determinants for each combination) was in the
general region of L,,*=0.9, y,*=0.8, and #,"=1.55. To determine the precise location of
the actual maximum determinant, both the L,," and y,* grid sizes were refined around the
previously obtained values of 0.9 and 0.8 respectively, (L, ,* was varied from 0.84 to 0.92
and y,* was varied from 0.6 to 0.9) while holding ¢#," constant at 1.55. For each L,,"
value, the maximum determinant was plotted as a function of the y,* location in Fig. 5.26.
As seen in this figure, the actual maximum determinant occurs at a L,," of 0.89 and a
corresponding y,* location of 0.77. However, it is seen that the curve is fairly flat when
L,, is located between 0.88 to 0.9; therefore, any value within this range could be used
for L, , to improve the accuracy of the property estimates. Note that L,,* is different than
L,,", as expected. If L,," had equalled L,,* the heat flux would be applied over the
entire boundary. Due to the insulated boundary conditions on the sides used in this
configuration, the problem would reduce to one-dimensional heat conduction and k,

could no longer be estimated.

5.2.1.2.3 Optimal Heating Time

The next parameter optimized was the heating time. Setting L,," and y," equal to
their optimal values calculated in the above section, (0.89 and 0.77, respectively) the
heating time was varied around its previously determined value of #,"=1.55 (from 1.45 to
1.65). At each heating time, the dimensionless determinant was calculated as a function

of dimensionless time. A few of these determinant curves are shown in Fig. 5.27 for
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various heating times. The maximum determinant value of all of these curves occurred
when the heating time was equal to 1.55. This is the same result obtained previously, and
therefore, the optimal values calculated for L,,* and y,*, which were found using a #,* of
1.55, do not have to be iteratively updated. Note, however, that the maximum
determinants are practically equal for all heating times between 1.45 and 1.65. Therefore,
using a t,* of 1.55 does not have to be precise to provide the most accurate property

estimates.

5.2.1.2.4 Optimal Experimental Time

Finally, the last parameter determined was the optimal dimensionless experimental
time, #,*. This was calculated using the same procedure as in Configuration 1 (Section
5.2.1.1.5) with the modified dimensionless determinant results shown in Fig. 5.28. Here,
it is evident that again, as in Configuration 1, after a dimensionless time of approximately
4.0, the determinant no longer changes. This implies that after this dimensionless time,
the temperature is returning to its initial state (a dimensionless value of zero) and little
additional information is being provided for the estimation of the thermal properties.
Therefore, the experiments can be concluded after a ¢," of 4.0. Again, however, as was
the case for Configuration 1, this is a conservative choice and a smaller value, such as

3.5, could have also been chosen.

5.2.1.2.5 Verification of the Optimal Temperature Sensor Location on the x* Axis
To verify the optimal location of the temperature sensor along the x* direction, for

114



SIT

Modified Determinant, D* x 107

90

80

70h
60_
50—
40_

30

20
10

| L ] L | 5 !

Figure 5.28.

1 2 3 4 5

Dimensionless Experimental Time, (tv)*

Modified Dimensionless Determinant, D*, Used to Determine the Dimensionless
Optimal Experimental Time, t,".




which a value of zero was determined, the dimensionless determinant was calculated
using the optimal values for y,*, L,,", and #,* for various x,* locations. The results are
shown in Fig. 5.29 against dimensionless time. As seen from this figure, the maximum
determinant occurred when the sensor was at the heated surface (x,*=0.0), confirming the

optimal result obtained for the x,” location.

5.2.1.2.6 Maximum Determinant Using the Optimal Experimental Parameters

In summary, the above optimization procedure resulted in the following optimal
experimental parameters for Configuration 2: x,*=0.0, y,"=0.77, L,,*=0.89 and #,"=1.55.
Using these optimal parameters, the dimensionless determinant, D*, was plotted as a
function of dimensionless time, where a maximum of 4.29 x 107 occurred, as shown in
Fig. 5.30. Again, the reason why these determinant values are less than those obtained

for the one-dimensional case is the same as discussed in Section 5.2.1.1.7.

5.2.1.2.7 Temperature Distributions for Configuration 2

Using the optimal values for x,* and L, ,*, the temperature was plotted for various
y,* locations for four different dimensionless times; initial (0.1), two intermediate (0.5 and
1.55), and steady state (4.0) (Fig. 5.31). Note that these temperature distributions were
calculated with the heat flux applied for the entire experimental time, #,". The desired
optimal values occur when the determinant is a maximum, or when the sensitivity
coefficients are the most sensitive to temperature changes. As mentioned previously, in
the case of thermal conductivity, this can occur when the temperature gradient is large.
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As seen from this figure, at an optimal y,* location of 0.77, the temperature gradient is
steep, and therefore, it is expected that the sensitivity coefficients for k, .- are large in
magnitude. However, the optimal y,* location for this design again does not occur at the
steepest temperature gradient and results for the same reasons given in the Configuration
1 analysis.

The temperature was also calculated as a function of dimensionless time using the
optimal experimental parameters determined previously (Fig. 5.32). As seen in Fig. 5.32,
the temperature distribution behaves the same way as for Configuration 1, where the heat
flux is terminated as the temperature approaches steady state (¢,"=1.55). This is again
consistent with Fig. 5.31, where applying the heat flux for the dimensionless time of 1.55

results in temperatures close to the steady state temperatures attained at '=4.0.

5.2.1.2.8 Sensitivity Coefficients Using the Optimal Experimental Parameters

Using the optimal experimental parameters determined, the dimensionless
sensitivity coefficients for the three effective thermal properties, k.4 k.. and C,5 were
calculated and plotted as a function of dimensionless time in Fig. 5.33. Here, it is seen
that the sensitivity coefficients for k., and C,; are relatively large in magnitude, while
for k, 5 the coefficients are much smaller (of the order 0.1). It is also seen that after a
dimensionless time of approximately four, all of the coefficients converge to zero,
indicating that temperature measurements taken beyond this time supply little additional
information for the estimation procedure. This result is consistent with both the
temperature distribution in Fig. 5.32, where its initial state was attained after this
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dimensionless time, and with the determined optimal experimental time, where after a #,*
of 4.0, the determinant no longer varied (Fig. 5.28).

Again, the sensitivity coefficients should be analyzed to see if they are correlated.
If correlation occurs, the thermal properties cannot be estimated independently. From Fig.
3.33, linear independence is again evident between C,; whose coefficient changes from
negative to positive values, and both &, and k, ., where the coefficients are always
negative. However, as with Configuration 1, it was desired to determine if the sensitivity
coefficients for k.5 and k, . are correlated. If correlation occurs, then only the ratio, x,,

can be estimated. To test for possible correlation, the ratio of Xk;,/Xk;,, was again

calculated, with the results shown in Fig. 5.34. If a straight line occurs, correlation exists.
From this figure, however, it is evident that a linear line does not occur, and therefore,

the coefficients are linearly independent and &, and k., can be estimated

simultaneously.

5.2.1.3 Comparison of Configurations 1 and 2

After calculating the optimal experimental parameters for both Configurations 1
and 2, the configurations were compared to determine which one would provide the most
accurate thermal property estimates. This comparison can be made by determining which
configuration has the largest maximum determinant. Figure 5.35 shows the dimensionless
determinants as a function of dimensionless experimental time calculated using the

optimal experimental parameters found for each configuration. From this figure, it is
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evident that the design with constant temperatures on the two sides (Configuration 1) will
provide more accurate estimates than the design with insulated sides (Configuration 2).
However, this conclusion requires further analysis by viewing the sensitivity coefficients
for each configuration, as shown in Fig. 5.36. Here, it is seen that the sensitivity
coefficients for k, ., and C,; are 20% and 9% larger in magnitude, respectively, for
Configuration 2 than Configuration 1. However, the sensitivity coefficient for kyo is
136% larger in magnitude for Configuration 1 than Configuration 2. (Note, these percents
were calculated using the largest point on each of the curves). This difference in k. is
much more substantial than that for k_, and C,. From viewing these sensitivity
coefficients, it can be concluded that when estimating all three thermal properties
simultaneously, Configuration 1 should be utilized, since it will provide approximately
the same amount of information for k. and C, 5 that Configuration 2 would provide, but
considerably more information for the estimation of k, . This result seems reasonable
since a greater temperature variation would occur in the y* direction (the same direction
as k, ) when the walls are maintained at a constant temperature of zero rather than
insulated, where the wall temperatures are allowed to rise (only the gradient at the wall
is required to remain equal to zero). This result in consistent with comparing the

maximum determinant values between the two configurations, as discussed previously.

52.14 Other Optimized Parameters
For both configurations used in the two-dimensional analysis, the optimal
parameters were determined using a L,, of 0.048 and a x,, of 7. A L, ratio of this
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magnitude is typical of the sizes of composite samples used in experimental designs. The
samples used by Loh and Beck (1991) to determine the effective thermal conductivities
parallel (k,..;) and perpendicular () to the fibers, from which they determined a thermal
conductivity ratio of 7, were also of this magnitude. Since this study uses similar carbon-
epoxy composite materials, a K,, of 7 was also used in this investigation. However, to
demonstrate how this optimization analysis could be extended to other composite
dimensions or effective thermal conductivity ratios, different values for x,, and L, were
also used in the optimization procedure. These combinations include L., equal to 0.048,
0.5, and 1.0, and K,, equal to 7, 1, and 1/7. The results for all combinations are discussed

in the following subsections.

5.2.1.4.1 Various L,, and x,, Combinations Used for Configuration 1

The first combination investigated was L,, = 0.5, and x,, = 7. This L, results in
the composite thickness in the direction of heat transfer (the x* direction in this analysis)
being ten times greater than when L,, equalled 0.048. Using the same procedure
discussed in Section 5.2.1.1, the general region of the maximum determinant was
calculated. Using the optimal experimental parameters found for this region, the
sensitivity coefficients were calculated and plotted, as shown in Fig. 5.37. From this
figure, it is seen that the coefficients reach steady state very quickly. This occurs because
of the significant increase in the thickness in the x* direction, creating more material to
absorb the heat produced from the applied heat flux. Therefore, it can be concluded that
using this L,, and x,, combination provides inadequate information for the estimation
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procedure and is not recommended as an experimental design. Based on this result, it is
evident that raising L,, to 1.0, where the thickness in the x* direction is additionally
increased, will provide similar results, and therefore, should also not be used as an
experimental design. When comparing these two results to the case previously analyzed
in Section 5.2.1.1.9 (L,, = 0.048, x,, = 7), it is scen that when using a thin sample for this
thermal conductivity ratio, more information is available for the estimation of the thermal
properties. This is shown by the larger sensitivity coefficients that result for all three
parameters (Fig. 5.24).

Next, to determine the effects of different effective thermal conductivity ratios, K,
was decreased to 1, and again, combinations for L,, equal to 0.048, 0.5, and 1.0 were
analyzed. Note that a K., of 1 implies that the resistance to heat flow is equal in both the
x* and y* directions (due to equal effective thermal conductivities).

For all three L -x,, combinations, the sensitivity coefficients were plotted using
experimental parameters around the maximum determinant region. These results are
shown in Figs. 5.38, 5.39, and 5.40 for L,, values of 0.048, 0.5, and 1.0, respectively.
From Fig. 5.38, it is seen that when L equals 0.048, sufficient information is provided
for the estimation of k., and C,, where the sensitivity coefficients are large in
magnitude. However, the coefficients for k. are quite small, remaining practically zero
for the entire experimental time. This implies that the estimation of k, .- will be difficult,
and most likely, inaccurate.

For L,, equal to 1.0 (Fig. 5.40), it is again seen that the sensitivity coefficients
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reach steady state fairly rapidly, and therefore, little information is being supplied for the
estimation of the thermal properties.

The sensitivity coefficients calculated using a L, of 0.5 (Fig. 5.39), however, are
all relatively large in magnitude. This implies that when using this L,, ratio, difficulty
in the estimation of the thermal parameters will not be encountered.

In conclusion, when a composite has equal effective thermal conductivities parallel
and perpendicular to the fibers, the optimal L, ratio is not for either a real small or real
large thickness in the direction of heat flow, but instead, falls somewhere in between. An
L,, of 0.5 may perhaps be the optimal ratio; however, this conclusion would require
further analysis.

The last combination of L.;’s and ,, for Configuration 1 were again, L,, equal to
0.048, 0.5, and 1.0, with K, equal to 1/7. Now, the effective thermal conductivity
perpendicular to the fibers (in the direction of the heat flow) is 7 times larger than the
thermal conductivity parallel to the fibers. The sensitivity coefficients for all three
combinations, L,, equal to 0.048, 0.5, and 1.0, were calculated using the optimal
experimental parameters determined around the maximum determinant region. These are
shown in Figs. 5.41, 5.42, and 5.43, respectively. From Fig. 5.41, where L,, = 0.048, it
is seen that k, .z cannot be estimated since the sensitivity coefficient is zero. This occurs
because the larger thermal conductivity (k,.,) is parallel to the heat flow (in the x*
direction). Since the sample is so thin in this direction, the majority of heat is conducted
along this path, causing very small temperature variations to occur perpendicular to the
heat flow, along the y* axis.
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From Fig. 5.42, is seen that increasing L, to 0.5 provides better results for the
estimation of k,.., where the sensitivity coefficient is larger in magnitude. This occurs
because the thickness in the direction of heat flow, x*, increases. Therefore, the
conduction process is slowed, allowing more heat to be dissipated in the y* direction.

This result is even more significant when increasing L., to 1.0 (Fig. 5.43), where
the largest magnitude for the k., sensitivity coefficient out of all three combinations
occurs.

It can be concluded from these results that when the effective thermal conductivity
in the direction of heat flow is much larger than the thermal conductivity in the direction
perpendicular, a better experimental design would consist of a larger thickness in the x*
direction, allowing more heat to be dissipated in the direction perpendicular to the heat

flow.

5.2.1.4.2 Various L,, and x,, Combinations Used for Configuration 2

Again, the first combination investigated was L,, = 0.5 and x,, = 7. The sensitivity
coefficients calculated using the optimal experimental parameters in the region of the
maximum determinant are shown in Fig. 5.44. Here, it is seen that not much information
is being supplied for the estimation of k., where the sensitivity coefficient is small.
This occurs because of the increased thickness in the x* direction. Raising L, t0 1.0 will
further increase this thickness, and therefore, similar results are expected. Therefore, it
can be concluded that when the thermal conductivity in the direction of heat flow is much
smaller than the thermal conductivity perpendicular to the direction of heat flow, a

138



6¢1

Dimensionless Sensitivity Coefficients

0.3
0.2

0.1}
0.0 |
01|
02|
03|
04 |
05

-0.6
-0.7

| ) J L ] . ] L ! A ! f

0 1 2 3 4 5

Dimensionless Experimental Time, (#y)*

Figure 5.44. Sensitivity Coefficients for Configuration 2 Using a L,, (L/L) of 0.5 and K,
(ky ik, q) Of 7.




composite sample with a small thickness should be used for the best results. This result
is consistent with the case previously analyzed (L,, = 0.048, x,, = 7), where the sensitivity
coefficients for all three parameters are slightly larger than when L, = 0.5.

Next, «,, was decreased to 1 and similar combinations for L., were analyzed.
Again, note that this x,, implies that the resistance to heat flow is equal in both the x* and
y* directions. The sensitivity coefficients calculated using the experimental parameters
around the maximum determinant region for all three L,-X,, combinations are shown in
Figs. 5.45, 5.46, and 5.47. In Fig. 5.45 (L,, = 0.048), it is seen that having a small
thickness in the x* direction creates difficulty in the estimation of %, where the
sensitivity coefficient is essentially zero for the entire experimental time. This result is
consistent with that obtained for Configuration 1 at a similar L, ratio. However, when
L,, is increased to 0.5 or 1.0 (Figs. 5.46 and 5.47, respectively), the k, s sensitivity
coefficients are of approximately the same magnitude, only different in sign. However,
this magnitude is still small and therefore, neither an L, of 0.5 or 1.0 is the optimal
value. The optimal L,, may lie between these values, but the exact determination would
require further analysis.

The last combinations of L,’s and X,, for Configuration 2 were again, L, equal
~ to 0.048, 0.5, and 1.0, with K,, equal to 1/7. Now, the effective thermal conductivity
perpendicular to the fibers (in the direction of heat flow), k, . is 7 times larger than the
thermal conductivity parallel to the fibers, k., The sensitivity coefficients for all three

combinations, L, equal to 0.048, 0.5, and 1.0, were calculated using the optimal
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experimental parameters determined around the maximum determinant region. These
results are shown in Figs. 5.48, 5.49, and 5.50, respectively. From each of these figures,
the same results are seen as for Configuration 1, where the best experimental design
consisted of a larger thickness in the x* direction (a L, of 1.0), allowing more heat to be
dissipated in the direction perpendicular to the applied heat flux. This is evident by the
larger sensitivity coefficient for k, ., when L, = 1.0 (Fig. 5.50) than when L,, equals either
0.5 (Fig. 5.49), where the magnitude of the coefficient is 0.1, or 0.048 (Fig. 5.48), where
the coefficients are essentially zero. Recall that this zero coefficient results for L,=
0.048 because the sample is very thin in the direction of heat transfer, x* (and the
direction of the larger effective thermal conductivity). Therefore, the majority of the heat
is conducted along the x* axis, causing very small temperature variations to occur along

the y* axis, and as a result, the estimation of k,; becomes difficult.
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Chapter 6

Conclusions and Summary

The primary objectives of this study were to develop optimal experimental designs
to be used for the estimation of thermal properties of composite materials. This includes
both one-dimensional (isotropic) and two-dimensional (anisotropic) analyses. Experiments
were then conducted for the one-dimensional case, using the optimal design, to estimate
the effective thermal conductivity perpendicular to the fibers and the effective volumetric
heat capacity of a composite consisting of IM7 graphite fibers and a Bismaleimide epoxy
matrix. The estimation procedure used was the modified Box-Kanemasu method. The

following conclusions can be made based on the obtained results.
6.1  Optimal Experimental Designs

In this investigation, optimal experimental designs were determined for both one-
dimensional and two-dimensional heat conduction processes. In the two-dimensional

analysis, two different configurations were investigated, both allowing for the estimation
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of the effective thermal conductivity in two directions and the effective volumetric heat

capacity.

6.1.1 One-Dimensional Optimal Experimental Design

For the one-dimensional experimental design, three experimental parameters were
optimized: dimensionless heating time, temperature sensor location, and dimensionless
experimental time. The following conclusions can be made based on the results obtained
for the specific geometry and boundary conditions used in this analysis:

1) The optimal dimensionless heating time is 2.2. However, the maximum

determinant curve had a rather flat peak between heating times of 2.0 and 2.5.

Therefore, any values within this range can be used.

2) The optimal temperature sensor location is at the heated surface.
3) The optimal dimensionless experimental time is approximately 5.0. Note however,

that this is a conservative choice.

6.1.2 Two-Dimensional Optimal Experimental Designs

For the two-dimensional experimental design, two configurations were analyzed.
Both configurations had a heat flux applied over a portion of one boundary, with the
remainder of the boundary insulated. In addition, Configuration 1 had known, constant
temperatures at the remaining three boundaries, while the second configuration had a
known constant temperature at the boundary opposite to the heat flux and insulated

conditions at the remaining two boundaries. For each configuration, the optimal
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experimental parameters determined include the temperature sensor location (x,*,y,*), the

dimensionless heating time, the location of the heat flux, and the dimensionless

experimental time. Based on the obtained results for the specific geometry and boundary

conditions used in this analysis, the following conclusions can be made:

6.1.2.1 Conclusions for Configuration 1

D

2)

3)

4)

6.1.2.2

1)
2)

3)

4)

The optimal dimensionless heating time is 1.4.

The optimal temperature sensor location occurs at a x,* of 0.0 (or at the heated
surface) and a y,” of 0.13 (13% of L, from the bottom edge).

The optimal location of the heat flux is across the entire y* boundary (L, ,*=1.0).
The optimal dimensionless experimental time is approximately 4.0. Note however,

that this is a conservative choice.

Conclusions for Configuration 2
The optimal dimensionless heating time is 1.55.
The optimal temperature sensor location occurs at a x,* of 0.0 (or at the heated
surface) and a y,* of 0.77 (77% of L, from the bottom edge).
The optimal location of the heat flux is across 89% of the y* boundary
(L,,"=0.89).
The optimal dimensionless experimental time is approximately 4.0. Again, this

is a conservative value.

The following conclusion can also be made when comparing the two configurations:
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D

6.2

Configuration 1 should be utilized when estimating kg k,

simultaneously, increasing the accuracy of the resulting property estimates.

Thermal Property Estimates

The estimation of the thermal properties, namely the effective thermal conductivity

perpendicular to the fibers and the effective volumetric heat capacity, was conducted for

the one-dimensional analysis using the modified Box-Kanemasu method. This estimation

procedure requires both measured and calculated temperatures. The measured

temperatures were obtained from experiments conducted using the optimal experimental

parameters. The following conclusions can be made based on the results of this portion

of the investigation:

1)
2)

3)

4)

)

6)

The effective thermal conductivity perpendicular to fibers (k,.,) is 0.52 W/m°C.
The effective volumetric heat capacity (C,p) is 1.48 MJ/m*°C.

The estimated parameters are both reliable, as shown by the small confidence
intervals and the Root Mean Square values.

The estimates for k., are more accurate than for C,

The sequential estimates converge to a steady value, indicating that the heat
conduction model and experimental design are satisfactory.

No bias error in the calculated temperatures is apparent.
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Chapter 7

Recommendations

The estimatioﬁ procedure used in this investigation to determine the effective
thermal conductivity perpendicular to the fiber axis and the effective volumetric heat
capacity proved to be quite accurate. However, because the problem had been simplified
by conducting the required experiments at room temperature, the actual environmental
conditions that many composites, especially in aerospace vehicles, are subjected to have
not been accurately described. These operating conditions usually occur over extreme
temperature ranges, resulting in temperature dependent thermal properties. Therefore, in
order to accurately determine the temperature distributions within these structures during
actual operational conditions, it is necessary to characterize this temperature dependence.
The estimation procedure can be modified to include this dependence by assuming a
functional relationship between the thermal properties and temperature. For example, the
thermal conductivity can be approximated by a piece-wise linear function | with

temperature:

T -T,
k, =k + (k, - k)o—o0>- (7.1)

ef
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where k; and k,,; are the coefficients to be estimated. The mathematical model can now
be modified to include temperature dependent properties and the least squares function
given in Eq. (3.33) can be minimized with respect to k; and k,,,.

In addition, it is also recommended that the results of the two-dimensional
optimization procedure be verified. This can be done by conducting experiments for the
two configurations using both the optimal experimental parameters and arbitrary
experimental parameters. The measured temperatures will then be utilized in the
estimation procedure to determine the thermal properties, k,.» k,.» and C,. The
estimates obtained using the experiments conducted with the optimal parameters should
provide the smallest confidence intervals. (Recall that the optimization procedure selected
for this study has the effect of minimizing the confidence intervals of the estimated
parameters).

The Box-Kanemasu method could also be implemented to determine the thermal
properties using both configurations sifnultaneously. Based on the magnitude of the
sensitivity coefficients, temperature measurements from Configuration 2 would be used
to estimate k, ., and C,, while k., would be estimated using measurements taken from
Configuration 1. Using both configurations together will then supply the most accurate
estimates for all three thermal properties.

Other properties could also be estimated, such as the thermal contact resistance
between composite components. Here, the least squares function would be minimized
with respect to the contact resistance. Furthermore, efforts could be taken for the analysis
of complex structures.
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Appendix A

The FORTRAN program 1DOPT.FOR

This program, 1IDOPT.FOR, is used to calculate the maximum determinant value
for the one-dimensional analysis, and to determine the corresponding optimal experimental

parameters.

PROGRAM ONEDOPT
C Written by Debbie Moncman, 1993

DOUBLE PRECISION BETAM,BETA2M,SUMT,SUMC,SUMK
DOUBLE PRECISION FF1,FF2,BETA2(0:1000),M, TIME, TIMEH
DOUBLE PRECISION BETA(0:1000), TT,X1T,X2T,INCRX2,PI
DOUBLE PRECISION Xi,T1,X1,X2, TTIME,DELTA,INCRET
DOUBLE PRECISION TMAX,D.XTX11,XTX12 XTX22,INCRX1
COMMON Xi, TIME,TIMEH
OPEN(UNIT = 15, FILE =’T.DAT’, STATUS="UNKNOWN’)
OPEN(UNIT = 20, FILE ="X1.DAT’, STATUS="UNKNOWN’)
OPEN(UNIT = 25, FILE =’X2.DAT’, STATUS="UNKNOWN’)
OPEN(UNIT = 30, FILE ='Dx1.DAT’, STATUS ="UNKNOWN’)
OPEN(UNIT = 35, FILE = 'DMAX.DAT’, STATUS="UNKNOWN")
PI =DACOS(-1.D0)
DELTA = 0.0250D0
TTIME = 6.d0
Xi = 0.0D+0
DO 7 TIMEH = DELTA, TTIME, DELTA

TMAX = 0.0D0

DMAX = 0.0D0

XTX11 = 0.0D0

XTX12 = 0.0D0

XTX22 = 0.0D0

TT = 0.0D+0

XI1T = 0.0D+0

X2T = 0.0D+0
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DO 20, TIME = DELTA, TTIME , DELTA
CALL MODEL(TT)
CALL SENS(X1T,X2T)
XTX11=XTX11+ X1T * X1T
XTX12=XTX12+ X1T * X2T
XTX22=XTX22+ X2T * X2T
C FIND TMAX
IF(TT.GTTMAX)TMAX =TT
D=(1.0DO/(TMAX*TMAX*TIME/DEL TA))**2*
+ (XTX11*¥XTX22-XTX12*XTX12)
C FIND DMAX
IF(D.GE.DMAX) THEN
DMAX =D
ENDIF
WRITE(15,12)TIME/DELTA, TIME,TT
WRITE(20,12)TIME X1T
WRITE(25,12)TIME, X2T
WRITE(30,40) TIME,D
40 FORMAT(1X, D10.5, 4X, D12.5)
12 FORMAT(2(1X,D12.4),4X,D12.5)
14 FORMAT(1X,D12.4,3(4X,D12.5))
20 CONTINUE
WRITE(Q35,8)DMAX, TIMEH
FORMAT(1X,2D15.6)
7 CONTINUE
CLOSE(15)
CLOSE(20)
CLOSE(@25)
CLOSE(30)
CLOSE(@35)
STOP
END

o0

C***********************************************************************
C  Subroutine to calculate the dimensionless temperature

SUBROUTINE MODEL(TT)
DOUBLE PRECISION FF1,BETA2M,TIME, TIMEH, T1,PI
DOUBLE PRECISION FF2,INCRET,SUMT Xi,BETAMM,TT
DOUBLE PRECISION BETA2(0:1000), BETA(0:1000)
COMMON Xi,TIME, TIMEH
PI =DACOS(-1.D0)
SUMT = 0.0D0
DO 10, M =1, 1000, 1

BETAM) = (M - 0.5DO)*PI

BETA2(M) = BETAM)**2.0D+0

BETAM = BETAMM)

BETA2M = BETA2(M)

FF1 = EXP(-BETA2M * TIME)

IF (TIMELE.TIMEH) THEN
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10
15

T1 = FF1
ELSE
FF2 = EXP(-BETA2M *(TIME - TIMEH))
T1 = FF1-FF2
ENDIF
INCRET = T1*COS(BETAM*Xi)/BETA2M
IF(M.NE.1) THEN
IF(ABS(INCRET/SUMT).LT.1.0D-20) THEN
GO TO 15
ENDIF
ENDIF
SUMT = SUMT + INCRET
CONTINUE
IF(TIME.LE.TIMEH) THEN
TT = 1.0D+0 - Xi - 2.0D+0*SUMT
ELSE
TT = -2.0D+0*SUMT
ENDIF
RETURN

 END

C*********************************** ¥ ok ok ¥
C Subroutine to Calculate the dimensionless Sensitivity Coefficients

ke ook sk ok ok ok ook e ok e e sl ke ke ok ok ook

SUBROUTINE SENS(X1T,X2T)

DOUBLE PRECISION TIME,TIMEH,BETAM,BETA2M, SUMK Xi,M
DOUBLE PRECISION SUMC,FF1,FF2,X1,X2,INCRX1,INCRX2
DOUBLE PRECISION BETA(0:1000),BETA2(0:1000),PI

DOUBLE PRECISION X1T, X2T
COMMON Xi, TIME, TIMEH
PI =DACOS(-1.D0)
SUMK = 0.0D+0
SUMC = 0.0D+0
DO 30,M =1, 1000, 1
BETAM) = M - 0.5DO)*PI
BETA2(M) = BETAM)**2.0D+0
BETAM = BETA(M)
BETA2M = BETA2(M)
FF1 = EXP(-BETA2M * TIME)
IF(TIME.LE.TIMEH) THEN
X1 = FF1 * (1/BETA2M + TIME)
X2 = TIME*FF1
ELSE
FF2 = EXP(-BETA2M *(TIME - TIMEH))

X1 = (1/BETA2M+TIME)*FF1-(1/BETA2M+(TIME-TIMEH))*FF2

X2 = TIME*FF1 - (TIME-TIMEH)*FF2
END IF
INCRX1 = X1*COS(BETAM * Xi)
INCRX2 = X2*COS(BETAM * Xi)
IF(M.NE.1) THEN
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30
16

IF(ABS(INCRX1/SUMK).LT.1.0D-20.AND.

ABS(INCRX2/SUMC).LT.1.0D-20) THEN
GO TO 16
END IF
END IF
SUMK = SUMK + INCRX1
SUMC = SUMC + INCRX2
CONTINUE
IF(TIME.LE.TIMEH) THEN
XI1T = -(1.0D0 - Xi) + 2.0D0*SUMK
X2T = -2.0D0 * SUMC
ELSE
X1T = 2.0D0*SUMK
X2T = -2.0D0 * SUMC
END IF
RETURN
END
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Appendix B

The FORTRAN program 2DCI1OPT.FOR

This program, 2DC10OPT.FOR, is used to calculate the maximum determinant
value for Configuration 1 of the two-dimensional analysis, and to determine the

corresponding optimal experimental parameters.

PROGRAM CFONEOPT
C Written by Debbie Moncman, 1994
DOUBLE PRECISION PI,SUMC,SUMKX,SUMKY
DOUBLE PRECISION Lr,K,BETAN,BETAN2 EXPON,TERM1,TX
DOUBLE PRECISION FF1,XKX,XKY,XC,FF2,CONST,INCRKX,INCRKY,INCRC
DOUBLE PRECISION TERM2,TERM3,SUMT,TEMP,INCRT
DOUBLE PRECISION EXPONTM,EXPONTH,SSSUMT, SSINCRT
DOUBLE PRECISION SSSUMKX,SSINCRKX,SSSUMKY,SSINCRKY
DOUBLE PRECISION TERM4,X,Y,Yp, TERMS,TMAX
DOUBLE PRECISION X1T,X2T X3T,XTX11,XTX12,XTX13,XTX22
DOUBLE PRECISION XTX23 XTX33,DET,D,DMAX, THOPT
DOUBLE PRECISION TIME, TIMEH,TTIME,DELTA, TIMET
INTEGER M,N
C OPEN(UNIT=40,FILE="TCTL1K17.DAT’ ,STATUS="UNKNOWN’)
C OPEN(UNIT=65,FILE="d.DAT’,STATUS="UNKNOWN")
PI = DACOS(-1.0D0)
DELTA = 0.05D0
TTIME = 6.0D0
K =7.0d0
Lr = 0.048276D0
SSSUMT = 0.D0
DO 2, M =1, 3000
Y = 0.5D0
Yp = 1.0DO
X =0D0
TERM1 = DSIN(M*PI*Y)
TERM2 = 1.D0 - DCOS(M*PI*Yp)

163



IF(TERM1.EQ.0..OR. TERM2.EQ.0.) GOTO 2
TERM3 = M**2¥PI*¥2¥] tk*2¥K
DO 3, N = 1, 3000

BETAN = PI*(N-0.5D0)

BETAN2 = BETAN*BETAN

TERM4 = TERM3 + BETAN2

TERMS = DCOS(BETAN*X)

IR(TERMS5.EQ.0.) GOTO 3
SSINCRT=TERM1*TERM2*TERM5*(1.DO/(M*TERM4))
SSSUMT = SSSUMT + SSINCRT

3 CONTINUE
2 CONTINUE

TMAX = SSSUMT*(4.DO/PI)

DO 150, Yp = 0.1D0, 1.0D0, 0.05D0

DO 125, X = 0.0D0, 1.0D0, 0.05D0

DO 100, Y = 0.0D0, 1.0D0, 0.05D0
DMAX = 0.D0
SSSUMT = 0.0D0
SSSUMKX = 0.0D0

~ SSSUMKY = 0.D0

DO 400, M = 1, 3000
TERMI = DSIN(M*PI*Y)
TERM2 = 1.D0 - DCOS(M*PI*Yp)

IF(TERM1.EQ.0..OR.TERM2.EQ.0.) GOTO 400

TERM3 = M**2¥PI¥*2¥Lr+*2¥K

DO 300, N = 1, 3000
BETAN = PI*(N-0.5D0)
BETAN2 = BETAN*BETAN
TERM4 = TERM3 + BETAN2
TERMS5 = DCOS(BETAN*X)

IF(TERM5.EQ.0.) GOTO 300

SSINCRT=TERM1*TERM2*TERM5*(1.DO/(M*TERM4))
SSINCRKX = TERM1*TERM2*DCOS(BETAN*X)*(1 DO/(M*TERM4))

+ *((TERM3/TERM4)-1.D0)
SSINCRKY = TERMI*TERM2*DCOS(BETAN*X)*(1.D0/(M*TERM4))
+ *(-TERM3/TERM4)

SSSUMT = SSSUMT + SSINCRT

SSSUMKX = SSSUMKX + SSINCRKX

SSSUMKY = SSSUMKY + SSINCRKY
300 CONTINUE
400 CONTINUE

DO 650, TIMEH = DELTA, TTIME, DELTA

XTX11 = 0D0

XTX12 = 0D0

XTX13 = 0D0

XTX22 =0D0

XTX23 = 0D0

XTX33 =0D0

SUMT = 0.0D0

SUMC = 0.D0

164



SUMKX = 0.D0
SUMKY = 0.D0
DO 200, TIME = DELTA, TTIME, DELTA
DO 500, M = 1, 10000,1
TERM1 = DSIN(M*PI*Y)
TERM2 = 1.D0 - DCOS(M*PI*Yp)

IF(TERM1.EQ.0..OR.TERM2.EQ.0.)GOTO 500

TERM3 = M**2¥PI¥¥2 ¥ p+*2*+K
DO 600, N =1, 1000, 1

BETAN = PI*(N-0.5D0)

BETAN2 = BETAN*BETAN

TERM4 = TERM3 + BETAN2

TERMS5 = DCOS(BETAN*X)

IF(TERMS5.EQ.0.)GOTO 600

EXPON = TERM4
EXPONTM = EXPON*TIME
IF(TIMELE.TIMEH) THEN

ELSE

IF(EXPONTM.LT.225.) THEN

FF1 = DEXP(-EXPONTM)

ELSE

FF1 = 0.D0

ENDIF

TX = FF1

XKX = BETAN2*TIME*FF1-((TERM3/EXPON)-1.D0)*FF1
XKY = TERM3*TIME*FF1 + ((TERM3/EXPON)*FF1)

XC = -EXPON*TIME*FF1

EXPONTH = (EXPON*(TIME-TIMEH))

IF(EXPONTH.LT.225..AND.EXPONTM.LT.225.)THEN

FF1 = DEXP(-EXPONTM)

FF2 = DEXP(-EXPONTH)

ELSE IF(EXPONTH.LT.225. AND.EXPONTM.GE.225.) THEN
FF2 = DEXP(-EXPONTH)

FF1 = 0D0

ELSE IF(EXPONTH.GE.225..AND EXPONTM.LT.225.) THEN
FF1 = DEXP(-EXPONTM)

FF2 = 0.D0

ELSE

FF1 = 0.D0

FF2 = 0.D0

ENDIF

TX = FF2 - FF1
XKX = ((TERM3/EXPON)-1.D0)*(FF2-FF1) +

BETAN2*TIME*FF1 - BETAN2*(TIME-TIMEH )*FF2

XKY = (-TERM3/EXPON)*(FF2-FF1) + TERM3*TIME*FF1

- TERM3*(TIME-TIMEH)*FF2

XC = EXPON¥(TIME-TIMEH)*FF2 - EXPON*TIME*FF1

ENDIF

CONST = TERM1*TERM2*TERMS5*(1.DO/(M*TERM4))
INCRT = TX*CONST
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410

500
450

14

INCRC = XC*CONST

INCRKX = XKX*CONST

INCRKY = XKY*CONST

IF(SUMT.NE.0..AND.SUMKX.NE.0..AND.SUMKY .NE.0..AND.

SUMC.NE.0.)THEN
IF(ABS(INCRT/SUMT).LT.1.D-20.AND.ABS(INCRKX/SUMKX).LT.
1.D-20.AND.ABS(INCRKY/SUMKY).LT.1.D-20.AND.ABS
(INCRC/SUMC).LT.1.D-20) THEN
GO TO 410
ENDIF

ENDIF

SUMT = SUMT + INCRT

SUMC = SUMC + INCRC

SUMKX = SUMKX + INCRKX

SUMKY = SUMKY + INCRKY

CONTINUE
IF(N.EQ.1)THEN

IF(ABS(INCRKX).L.T.1.D-20.AND.ABS(INCRKY).LT.1.D-20
.AND.ABS(INCRC).LT.1.D-20.AND.ABS(INCRT) LT.
1.D-20)THEN

GO TO 450

ENDIF

ENDIF
CONTINUE
IF(TIME.LE.TIMEH) THEN

TEMP = (4.DO/PT)*(SSSUMT-SUMT)
X3T = (4.0D0/PI)*SUMC

X1T = (4.DO/PD*(SSSUMKX + SUMKX)
X2T = (4DO/PD*(SUMKY + SSSUMKY)

ELSE

TEMP = (4.0D0/PI)*SUMT
X3T = 4.D0/PD*SUMC
X1T = (4.DO/PD)*SUMKX
X2T = (4DO/P)*SUMKY

ENDIF
WRITE(40,14)y, TIME, TEMP,x1t,x2t,x3t
FORMAT(1x,£5.2,5¢13.5)

XI1T = X1T/TMAX

X2T = X2T/TMAX

X3T = X3T/TMAX

XTX11 = XTX11 + X1T*X1T

XTX12 = XTX12 + X1T*X2T

XTX13 = XTX13 + X1T*X3T

XTX22 = XTX22 + X2T*X2T

XTX23 = XTX23 + X2T*X3T

XTX33 = XTX33 + X3T*X3T

DET = XTX11*(XTX22*%XTX33 - XTX23*XTX23) - XTX12*(XTX12*XTX33

- XTX13*XTX23) + XTX13*(XTX12*¥XTX23 - XTX13*XTX22)

D = (1.DOATIME/DELTA))**3*DET
IF(D.GE.DMAX) THEN
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200
650

110
100
125
150

DMAX =D
THOPT = TIMEH
TIMET = TIME
ENDIF
SUMT = 0.0D0
SUMC = 0.D0
SUMKX = 0.D0
SUMKY = 0.D0
CONTINUE
CONTINUE
WRITE(65,110)X,Y,Yp, DMAX, THOPT, TIMET
FORMAT(1X,3(2X,F6.3),3E13.6)
CONTINUE
CONTINUE
CONTINUE
STOP
END
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Appendix C

The FORTRAN program 2DC20PT.FOR

This program, 2DC20PT.FOR, is used to calculate the maximum determinant
value for Configuration 2 of the two-dimensional analysis, and to determine the

corresponding optimal experimental parameters.

PROGRAM CFTWOOPT
C Written by Debbie Moncman, 1994

DOUBLE PRECISION PI,SUMC,SUMKX,SUMKY
DOUBLE PRECISION Lr,K,BETAN,BETAN2,TERM1,T1
DOUBLE PRECISION FF1,XKX,XKY,XCP,FF2,CONST,INCRKX,INCRKY,INCRC
DOUBLE PRECISION TERM2,TERM3,SUMT,TEMP,INCRT,KYN,CPN
DOUBLE PRECISION EXPONTM,EXPONTH,SSSUMT, SSINCRT
DOUBLE PRECISION SSSUMKX,SSINCRKX,SSSUMKY,SSINCRKY,SSTEMP2
DOUBLE PRECISION TERM4,X,Y.Xp, TMAX,TEMP1,TEMP2,SSTEMP1
DOUBLE PRECISION X1T,X2T,X3T,XTX11,XTX12,XTX13,XTX22
DOUBLE PRECISION XTX23,XTX33,DET,D,DMAX, THOPT,SSUMTN
DOUBLE PRECISION TIME, TIMEH, TTIME,DELTA timet,term5
INTEGER M,N
OPEN(UNIT=40,FILE="TIL1K17 DAT’ STATUS="UNKNOWN’)
OPEN(UNIT=65,FILE="DIVARYY.DAT’ ,STATUS="UNKNOWN")
PI = DACOS(-1.0D0)
DELTA = 0.05D0
TTIME = 6.0D0
K =7.0d0
Lr = 0.048276D0
SSSUMT = 0.D0
SSUMTN = 0D0
DO N =1, 3000,1

Y = 0.0D0

Xp = 1.0DO

X = 0.5D0
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BETAN = PI*(N-0.5D0)
BETAN2 = BETAN*BETAN
INCRT = DCOS(BETAN*Y)/BETAN2
SSUMTN = SSUMTN + INCRT
ENDDO
SSTEMPI = 2.D0*Xp*SSUMTN
DO 2, M = 1, 3000
Y = 0.0D0
Xp = 1.0D0
X = 0.5D0
TERM1 = DCOS(M*PI*X)
TERM2 = DSIN(M*PI*Xp)
IF(TERM1.EQ.0..OR. TERM2.EQ.0.) GOTO 2
TERM3 = M#*#2#PI¥#2¥] r#*2¥K
DO 3, N = 1, 3000, 1
BETAN = PI*(N-0.5D0)
BETAN2 = BETAN*BETAN
TERM4 = TERM3 + BETAN2
TERMS = DCOS(BETAN*Y)
IF(TERM5 EQ.0.) GOTO 3
SSINCRT = TERM1*TERM2*term5*(1.DO/(M*TERM4))
SSSUMT = SSSUMT + SSINCRT
CONTINUE
CONTINUE
SSTEMP? = 4.0D0/PI*SSSUMT
TMAX = SSTEMP2 + SSTEMP!
DO 150, Xp = 0.1D0, 1.05D0, 0.05D0
DO 125, Y = 0.0D0, 1.0D0, 0.05D0
DO 100, X = 0.0D0, 1.0D0, 0.05D0
DMAX = 0.D0
SSSUMT = 0.0D0
SSSUMKX = 0.0D0
SSSUMKY = 0.D0
DO 400, M = 1, 3000
TERMI1 = DCOS(M*PI*X)
TERM?2 = DSIN(M*PI*Xp)
IF(TERM1.EQ.0..OR TERM2.EQ.0.) GOTO 400
TERM3 = M**2¥PI*#2¥Lr+¥2¥K
DO 300, N = 1, 3000, 1
BETAN = PI*(N-0.5D0)
BETAN2 = BETAN*BETAN
TERM4 = TERM3 + BETAN2
TERMS = DCOS(BETAN*Y)
IR(TERMS5 EQ.0.) GOTO 300
SSINCRT = TERMI*TERM2*termS*(1 DO/(M*TERM4))
SSINCRKX = TERMI*TERM2*term5*(1.DO/(M*TERM4))
*(-TERM3/TERM4)
SSINCRKY = TERM1*TERM2*term5*(1.DO/(M*TERM4))
*((TERM3/TERM4)-1.D0)
SSSUMKX = SSSUMKX + SSINCRKX
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300

SSSUMKY = SSSUMKY + SSINCRKY
SSSUMT = SSSUMT + SSINCRT
CONTINUE
CONTINUE
DO 650, TIMEH = DELTA, TTIME, DELTA
XTX11 =0D0
XTX12 = 0D0
XTX13 = 0D0
XTX22 =0D0
XTX23 = 0.D0
XTX33 =0D0
SUMT = 0.0D0
SUMC = 0.D0
SUMKX = 0.D0
SUMKY = 0D0
DO 200, TIME = DELTA, TTIME, DELTA
DO N =1, 500,1
BETAN = PI*(N-0.5D0)
BETAN2 = BETAN*BETAN
EXPONTM = BETAN2*TIME
IF(TIME.LE. TIMEH) THEN
IF(EXPONTM.LE.225.) THEN
FF1 = DEXP(-EXPONTM)
ELSE
FF1 = 0D0
ENDIF
T1 = (1.D0 - FF1)
XCP = TIME*FF1
XKY = (-1.D0/BETAN2) + (TIME +(1.DO/BETAN2))*FF1
ELSE
EXPONTH = BETAN2*(TIME-TIMEH)
IF(EXPONTH.LE.225. AND EXPONTM.LE.225.) THEN
FF1 = DEXP(-EXPONTM)
FF2 = DEXP(-EXPONTH)
ELSE IF(EXPONTH.GT.225..AND.EXPONTM.LE.225.)THEN
FF1 = DEXP(-EXPONTM)
FF2 = 0.D0
ELSE IF(EXPONTH.LE.225. AND.EXPONTM.GT.225.) THEN
FF1 = 0.DO
FF2 = DEXP(-EXPONTH)
ELSE IF(EXPONTH.GT.225.. AND EXPONTM.GT.225.) THEN
FF1 = 0.D0
FF2 = 0.D0
ENDIF
T1 = FF2 - FF1
XKY = ((1.DO/BETAN2)+TIME)*FF1 - ((TIME-TIMEH)
+ (1.DO/BETAN2))*FF2
XCP = TIME*FF1 - (TIME-TIMEH)*FF2
ENDIF
INCRT = TI*DCOS(BETAN*Y)/BETAN2
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INCRKY = DCOSBETAN*Y)*XKY

INCRC = XCP*DCOS(BETAN*Y)

IF(SUMT.NE.0..AND.SUMKY NE.0..AND.SUMC.NE.O.)THEN
IF(ABS(INCRT/SUMT).LE.1.D-10.AND.ABS(INCRK Y/SUMKY)

.LE.1D-10.AND.ABS(INCRC/SUMC).LE.1.D-10) THEN

GOTO 13
ENDIF

ENDIF

SUMT = SUMT + INCRT

SUMKY = SUMKY + INCRKY

SUMC = SUMC + INCRC

ENDDO
TEMPI = 2.D0*Xp*SUMT
KYN = 2D0*Xp*SUMKY
CPN = -2.D0*Xp*SUMC
SUMT = 0.D0

SUMC = 0D0

SUMKY = 0.D0

DO 500, M = 1, 10000,1

TERM1 = DCOS(M*PI*X)
TERM2 = DSIN(M*PI*Xp)
IF(TERM1.EQ.0..OR. TERM2.EQ.0.) GOTO 500
TERM3 = M*$2¥PI¥¥2+L p+#2%K
DO 600, N = 1, 1000, 1
BETAN = PT*(N-0.5D0)
BETAN2 = BETAN*BETAN
TERM4 = TERM3 + BETAN2
TERMS = DCOS(BETAN*Y)
IF(TERMS5 EQ.0.) GOTO 600
EXPONTM = TERM4*TIME
IR(TIME LE.TIMEH) THEN
IFEEXPONTM.LT.225.) THEN
FF1 = DEXP(-EXPONTM)
ELSE
FF1 = 0.D0
ENDIF
T1= FF1
XKX = (TERM3/TERM4)*FF1 + TERM3*TIME*FF1
XKY = ((TERM3/TERMA4)-1.D0)*(-FF1)+BETAN2*TIME*FF1
XCP = -(TERM4*TIME*FF1)
ELSE
EXPONTH = TERM4*(TIME-TIMEH)
IFEXPONTH.LE 225.. AND.EXPONTM.LE.225.) THEN
FF1 = DEXP(-EXPONTM)
FF2 = DEXP(-EXPONTH)
ELSE IFEXPONTH.GT.225..AND EXPONTM.LE.225.)THEN
FF2 = 0.D0
FF1 = DEXP(-EXPONTM)
ELSE IF(EXPONTH.LE.225. AND EXPONTM.GT.225.) THEN
FF1 = 0.D0
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500
450

+

FF2 = DEXP(-EXPONTH)
ELSE IF(EXPONTH.GT.225.. AND.EXPONTM.GT.225.) THEN
FF1 = 0.D0
FF2 = 0.D0
ENDIF
T1 = FF2 - FF1
XKX = (-TERM3/TERM4)*(FF2-FF1) + TERM3*TIME*FF1
- TERM3*(TIME-TIMEH)*FF2
XKY = ((TERM3/TERM4)-1.D0)*(FF2-FF1) + BETAN2*TIME*FF1
- BETAN2*(TIME-TIMEH)*FF2
XCP = TERM4*(TIME-TIMEH)*FF2 - TERM4*TIME*FF1
ENDIF
CONST = TERM1*TERM2*TERMS5*(1.D0/(M*TERM4))
INCRT = T1*CONST
INCRKX = XKX*CONST
INCRKY = XKY*CONST
INCRC = XCP*CONST
IF(SUMT.NE.0..AND.SUMKX NE.0..AND.SUMKY.NE.(0..AND.
SUMC.NE.0.)THEN

IF(ABS(INCRT/SUMT).LT.1.D-20.AND.ABS(INCRK X/SUMKX).L.T.

1.D-20.AND.ABS(INCRKY/SUMKY).LT.1.D-20.AND.ABS
(INCRC/SUMC).LT.1.D-20) THEN
GO TO 410
ENDIF
ENDIF
SUMT = SUMT + INCRT
SUMC = SUMC + INCRC
SUMKX = SUMKX + INCRKX
SUMKY = SUMKY + INCRKY
CONTINUE
IF(N.EQ.1)THEN
IF(ABS(INCRKX).LT.1.D-20. AND.ABS(INCRKY).LT.1.D-20
.AND.ABS(INCRC).LT.1.D-20.AND.ABS(INCRT).LT.
1.D-20)THEN
GO TO 450
ENDIF
ENDIF
CONTINUE
IF(TIMELE.TIMEH) THEN
TEMP2 = (4.DO/PD*(SSSUMT - SUMT)
XI1T = (4.DO/PD)*(SSSUMKX + SUMKX)
X2T = KYN + (4.D0/PI)*(SSSUMKY + SUMKY)
X3T = CPN + (4.D0/PI)*SUMC
ELSE
TEMP2 = (4.D0/P)*SUMT
X1T = (4.DO/PI)*SUMKX
X2T = KYN + (4.D0/PD)*SUMKY
X3T = CPN + (4.DO/PT)*SUMC
ENDIF
TEMP = TEMP1 + TEMP2
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200
650

110
100
125
150

WRITE(40,14)y, TIME, TEMP,x 1t,x2¢,x3t
format(1x,£5.2,5¢13.5)
X1T = X1T/TMAX
X2T = X2T/TMAX
X3T = X3T/TMAX
XTX11 = XTX11 + X1T*X1T
XTX12 = XTX12 + X1T*X2T
XTX13 = XTX13 + X1T*X3T
XTX22 = XTX22 + X2T*X2T
XTX23 = XTX23 + X2T*X3T
XTX33 = XTX33 + X3T*X3T
DET = XTX11*(XTX22*XTX33 - XTX23*¥XTX23) - XTX12%(XTX12*XTX33
- XTX13*XTX23) + XTX13*(XTX12*XTX23 - XTX13*XTX22)
D = (1.DO/(TIME/DELTA))**3*DET
IF(D.GE.DMAX) THEN
DMAX =D
THOPT = TIMEH
TIMET = TIME
ENDIF
SUMT = 0.0D0
SUMC = 0.D0
SUMKX = 0.D0
SUMKY = 0.D0
CONTINUE
CONTINUE
WRITE(65,110)Xp,Y, X, DMAX, THOPT, TIMET
FORMAT(1X,3(2X,F6.3),3E13.6)
CONTINUE
CONTINUE
CONTINUE
STOP
END
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Appendix D

The FORTRAN program MODBOX.FOR

This program, MODBOX.FOR, uses the modified Box-Kanemasu method to

estimate the thermal properties.

PROGRAM NLINA
Ccceeccecce PROGRAM DESCRIPTION CCCCCCCCC
C THIS PROGRAM USES THE MATRIX INVERSION LEMMA (BASED ON C
C THE GAUSS LINEARIZATION METHOD) AND THE BOX-KANEMASU C
C METHOD TO ESTIMATE THE PARAMETERS OF A GIVEN MODEL. C
C****************************************************************C
C
C Written by Debbie Moncman, 1993
C Based on the program, NLINAFOR, by J. V. Beck (1993)
CCcceececce DIMENSION BLOCK CCcceececce
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION T(1500,5),Y(1500),S1G2(1500),B(5),SC(5),A(5),BS(5),
+ VINV(5,5),BSS(5),SUMG(5),R(5,5),EXTRA(20),ERR(1500),
+ PS(5,5),P(5,5),XTX(5,5), XTY(5),SUM(5), VALUEK(5),BSV(5)
CHARACTER*40 INFILE, OUTFIL

C****************************************************************C

C COMMON BLOCK C
COMMON T,N,SC,BS,LETA,PS,P,B,A,Y,SIG2,MODL,VINV,NP,EXTRA
COMMON/ERROR/ERR
COMMON/MOD/AA,TL,SUM
Coksoiooiomskookkokok kol ok kool ok ook ook oksolokolk ko ok kR ook ok Kk (O
C DATA BLOCK C

DATA EPSDEN,CRITER/1.0D-30,0.0001D+0/
Crokiolomakookiok ok ok ok ok ok oo ok ioloiokokdok ook kol ook ok R ok ok ook (O
C INITIALIZATION BLOCK C
WRITE(*,*’ENTER THE NAME OF THE INPUT DATA FILE’
READ(*,’(A40)")INFILE
OPEN(8, ,FILE=INFILE)
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WRITE(*,*’ENTER THE NAME OF THE OUTPUT FILE’
READ(*,’(A40)")OUTFIL
OPEN(7,FILE=OUTFIL)

C****************************************************************C

C

PROCESS BLOCK C

C -- START READING INPUT VALUES
C BLOCK 1

WRITE(7,*)’INPUT QUANTITIES’
READ(8,*) N, NP, NI, MAXIT, MODL, IPRINT
WRITE(7,*)
WRITE(7,*)’BLOCK 1’
WRITE(7,*)
WRITE(7,*)’N - NUMBER OF DATA POINTS (MEASUREMENTS)’
WRITE(7,*)’NP - NUMBER OF PARAMETERS’
WRITE(7,*y’NI - NUMBER OF INDEPENDENT VARIABLES’
WRITE(7,*)’MAXIT - MAXIMUM NUMBER OF ITERATIONS’
WRITE(7,*’MODL - MODEL NO.(NEEDED IF SEVERAL MODELS ARE USED)’
WRITE(7,*)'IPRINT - 1 FOR USUAL PRINTOUTS, 0 FOR LESS’
WRITE(7,*)
IF(N.LE.0)THEN

STOP
END IF
WRITE(7,(/,9X,’N”* ,8X,”’NP”* 8X,”’NI'*,5X,”’ MAXIT"’,5X,

+”’MODL” 4X,”’IPRINT”’)")

WRITE(7,’ (7110)" )N,NP,N[ MAXIT,MODL,IPRINT

C BLOCK 2 (INITIAL PARAMETER ESTIMATES)

WRITE(7,%)
WRITE(7,*y’BLOCK 2’

WRITE(7,%)

WRITE(7,*)’B(1),....B(NP) ARE THE INITIAL PARAMETER ESTIMATES.’
WRITE(7,%)

READ(8,*)(B(I),I=1,NP)

WRITE(7,’(10X,”’B("’,11,”) =" F16.5)")(,B(1),I=1,NP)

C BLOCK 3 (INPUT MEASUREMENTS)

+

WRITE(7,*)

WRITE(7,*)’'BLOCK 3’

WRITE(7,*)

WRITE(7,*)’] - DATA POINT INDEX’

WRITE(7,*y’Y(J) - MEASURED TEMPERATURE VALUE’

WRITE(7,*)’SIGMA(J) - STANDARD DEVIATION OF Y(J)y

WRITE(7,%)’T(J,1) - FIRST INDEPENDENT VARIABLE’

WRITE(7,*)

WRITE(7,’(1,9X,°T’,6X,’ Y(J)"*,3X,”’ SIGMA(J)’,6X,

7TJ,1)7,6X,°T(J,2)"°))

DO I1=1,N
READ(8,*)],Y(J),S1G2(J),(T(,KT),KT=1,NI)
WRITE(7,”(110,7F10.5)")J,Y (1),SIG2(0),(T(J,KT),KT=1,NI)
SIG2()) = SIG2(0)*SIG2(J)

END DO

C BLOCK 4 (INPUT ANY EXTRA DATA NEEDED IN THE MODEL)
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cccceecec

CCCCCCQ ek s et seske s e s e seske sk e sk sk ke ks sk seseokesk s

READ(8,*)IEXTRA

IEXTRA is the number of constants used in the model such as

initial temperatures, surface temperatures, or a heat flux.

It equals O for no extra input.
WRITE(7,¥)
WRITE(7,*)’BLOCK 4
WRITE(7,*)

WRITE(7,*'IEXTRA - NUMBER OF EXTRA(I) PARAMETERS (0 IF NONE)’

WRITE(7,*)

WRITE(7,” (10X, IEXTRA ="",110))IEXTRA

IFAEXTRA.GE.1) THEN
WRITE(7,%)

WRITE(7,*)EXTRA(1),... ARE EXTRA CONSTANTS USED IN THE MODEL’

WRITE(7,*)

READ(, *)(EXTRA(D,I=1,IEXTRA)

WRITE(7,”C’EXTRA(,12,”’) =" F16.5)’)

(LEXTRA(]),I=1,IJEXTRA)
ENDIF
End input, begin calculations
WRITE(7,*)

WRITE(7,*)’END INPUT QUANTITIES, BEGIN OUTPUT CALCULATIONS’

WRITE(7,*)

WRITE(7,*y’'SSY - SUM OF SQUARES FOR PRESENT PARAMETER VALUES’
WRITE(7,*)’SSYP - SUM OF SQUARES FOR BOX-KANEMASU PARAMETER VAL!

WRITE(7,*y
WRITE(7,*y

SSYP DECREASES TOWARDS A POSITIVE CONSTANT’
AND SHOULD BE LESS THAN SSY’

WRITE(7,*)’G - MEASURE OF THE SLOPE, IT SHOULD APPROACH ZERQO’

WRITE(7,*y

AT CONVERGENCFE’

WRITE(7,*’H - SCALAR INTERPOLATION FACTOR; ITS A FRACTION OF

WRITE(7,*y
WRITE(7,*)
WRITE(7,*)

C -- Set the P matrix equal to zero

DO I2=1,NP
DO K2=1NP
PS(X2,12)=0
P(K2,12)=0
ENDDO
ENDDO
DO I3=1,NP
PS(I3,13)=B{3)*B(13)*1.0D+7
ENDDO
DOK=1,NP
BSX)=B(K)
BSV(K)=BS(K)
SUMG() = 0.0D+0
ENDDO

C -- Set XTX and XTY sums equal to 0

PART I OF PROGRAM (GAUSS METHOD)
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DOK=1,NP
XTY(K) = 0.0D+0
DOJ=1,NP
XTX(J,K) = 0.0D+0
ENDDO
ENDDO

C -- I and MAX are counters
I=0
MAX =0
100 MAX =MAX+1
SSY = 0.0D+0
DOI3=1N
I=13
CALL MODEL
CALL SENS
RESID = Y() - ETA
SSY = SSY + RESID*RESID/SIG2(I)

C -- Calculate XTX, XTY, and SUMG (used in the Box-Kanemasu method)

DOK=1,NP
XTY(K) = XTY(X) + SC(K)*RESID/SIG2(D)
SUMG(K) = SUMG(K) + SCK)*RESID/SIG2(I)
DOL=1,NP

XTX(K,L) = XTX(K,L) + SCK)*SC(L)/SIG2(Y)

ENDDO
ENDDO
DOK=1,NP
AK) = 0.0D+0
ENDDOQO
C -- Calculate *A’ used in the MIL method
DOK =1,NP
DOJ =1, NP
AK) = AK) + SCO*PXK.T)
ENDDO
ENDDO
DELSUM = 0.0D+0
C -- Calculate "DELTA’ used in the MIL. method
DO K =1NP
DELSUM = DELSUM + SCX)*AXK)
ENDDO
DELTA = SIG2(I) + DELSUM
C -- Calculate 'K’ used in the MIL method
DOK=1,NP
VALUEK(K) = A(K)/DELTA
ENDDO
SUMH = 0.0D+0
C -- Calculate ’'SUMH’ used in "HU’
DOJ=1, NP
SUMH = SUMH + SC()*B(@) - BS())
ENDDO
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HU = Y(I) - ETA - SUMH
C -- Estimated parameters found using the Gauss Method:
DOK=1,NP
B(K) = B(K) + VALUEK(K)*HU
ENDDO
C -- Calculate the new P matrix
DO U= 1NP
DOV =1NP
P(U,V) = PS(U,V) - VALUEK(U)*A(V)
ENDDO
ENDDO
C -- Make the P matrix symmetrical
DOJ=2 NP
IK=7J-1
DOK=1JK
P, ))=P(J ,K)
ENDDO
ENDDO
DOJ=1NP
DOK=1NP
PS(K.J) = P(K.D)
ENDDO
ENDDO
C************************************************************************
C -- Done with Gauss calculations, Print results
IF(IPRINT.GT.0) THEN
IF(LEQ.1) THEN
WRITE(7,*)
WRITE(7,*)' SEQUENTIAL ESTS. OF THE PARAMETERS GIVEN BELOW’
WRITE(7,*)’(THESE EST. ARE FOUND USING THE GAUSS METHOD)’
WRITE(, (//,3X,’T”,6X,”ETA” ,5X,’RESIDUALS”’,7X,
+ B(1)",8X,”’B(2)’,6X,’SC(1)”’, 6X,”’SC(2)"’)’)
END IF
WRITE(7,’(14,6E12.5)’)]1, ETA, RESID, (B(IP),IP=1,NP),SC(1)*B(1),
+ SC()*B(2)
ENDIF
ENDDO
WRITE(7,¥)
WRITE(*,*)’END BASIC LOOP’

WRITE(7,*)’THE FINAL SEQUENTIAL ESTIMATES WILL NOW BE MODIFIED

+ USING THE BOX-KANEMASU METHOD’

Ccccceeccecece PART H: BOX-KANEMASU MODIFICATION CCccceecece
CCCCCCCCC************************************************CCCCCCCCC
C -- Set BSS equal to the initial estimate for that iteration

DOJ=1, NP

BSS(@J) = BS{J)

ENDDO

ALPHA = 2.0D+0

AA = 1.1D+0
200 ALPHA = ALPHA/2.0D+0
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C -- Calculate the parameters using the modified step-size
DO K = 1NP
BS(K) = BSS(K) + ALPHA*(B(K) - BSS(K))
ENDDO
CHANGE =0
G = 0.0D+0
C -- Calculate the slope, G
DOK=1,NP
DELTAB = BS(K) - BSS(K)
G = G + DELTAB*SUMG(K)
ENDDO

C -- By the definition of G, it should always be positive.
IF (G.LT.0.0D+0) THEN
WRITE(7,*)’'G IS NEGATIVE, TERMINATE CALCULATIONS’
GOTO 1000
ENDIF
SSYP = 0.0D+0
C -- Calculate the new sum of squares based on the modified parameters
DOB=1,N
I=13
CALL MODEL
RESID = Y(I) - ETA
SSYP = SSYP + RESID*RESID/SIG2(I)
ENDDO
IF(SSYP.GT.SSY) THEN
IF (ALPHA LE.0.01D+0) THEN
WRITE(7,250)ALPHA,SSYP,SSY
250 FORMAT(X,’ALPHA 1S TOO SMALL, ALPHA =’ F12.6,2X,
+ 'SSYP =, E15.6, 2X, *SSY =’, E15.6)
GOTO 1000
ELSE
GOTO 200
ENDIF
ENDIF
C -- Calculate SUMCH, used in the following inequality to determine H
SUMCH = SSY - ALPHA*G*(2.0D+0-(1.0D+0/AA))
IF(SSYP.GT.SUMCH) THEN
H = (ALPHA*ALPHA*G)/(SSYP - SSY + (2.0D+0*ALPHA*G))

ELSE
H = ALPHA*AA
ENDIF
C -- Calculate the final parameter estimates using H.
DOK=1,NP
B(K) = BSS(K) + H*(B(K) - BSS(K))
ENDDO

C -- Calculate RATIO; if it is less that CRITER (0.0001), then the change
C in the estimated parameters is insignificant and the iterative

C  process is terminated. CHANGE is used to determine when all

C  parameters stop varying.
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DOJ=1, NP
RATIO = (B(J) - BSS(M)/( BSSU)+EPSDEN)
RATIO = ABS(RATIO)
IF(RATIO.LE.CRITER)THEN
CHANGE = CHANGE + 1
ENDIF
ENDDO
C -- Print out the calculated values for H, G, SSY, and SSYP
WRITE(7,120)
WRITE(*,120)
120 FORMAT(SX,"MAX’,10X,’H’,13X,’G’,12X,’SSY’,11X,’SSYP?)
WRITE(*,125)MAX,H,G,SSY,SSYP
WRITE(7,125) MAX,H,G,SSY,SSYP
125 FORMAT(18,1F13.6,4E14.6)

C -- Print out the final parameter estimates
WRITE(7,*)’ THE FINAL PARAMETER ESTIMATES FOR THIS ITERATION ARFE’
WRITE(*,(10X,’B(’,11,”’) =’ E16.6)’) (I,B(I),]=1,NP)
WRITE(7,’(10X,’B(’,11,”’) ="’ [E16.6)’) (I,B(I),I=1,NP)
C -- End the Box-Kanemasu Modification
WRITE(7, (/,5X,”’P(1,KP)’ 9%, P2 KP)"’ 9X,”’P(3,KP)"’ 9X,
+ ’P(7.KP)’,9X,°P(5,KP)’’)")
C -- Print out the P matrix
WRITE(7,129)
129 FORMAT(5X,”THE P MATRIX IS’)
DOIP=1,NP
WRITE(7,130) (P(IP,KP),KP=1,NP)
ENDDO
130 FORMAT(5D15.7)
WRITE(7,135)

135 FORMAT(5X,”THE CORRELATION MATRIX IS’)

DO IR=1,NP
DOIR2=1,IR

AR = P(IR,IR) * P(IR2,IR2)
R(R,IR2) = P(IR,IR2)/SQRT(AR)
ENDDO

ENDDO

DOIR =1, NP
WRITE(7,’(5E15.7) ¥R(R,IID),I1I=1, IR)

ENDDO

WRITE(7,¥)

WRITE(7,¥)’The diagonal terms of the correlation matrix are
all unity and the off-diagonal terms must be in the interval
[-1,1]. Whenever all the off-diagonal terms exceed 0.9
in magnitude, the estimates are highly correlated and
tend to be inaccurate’

DOK =1, NP
XTY(X) = 0.0D+0
BS(K) = B(K)

SUMG(K) = 0.0D+0

+ + + +
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DOJ=1,NP
XTX(J,K) = 0.0D+0
PS{,K)=0.0D+0
PS{.,J) = BSV()*BSV(J)*1.0D+7
ENDDO
ENDDO
WRITE(7,400)
FORMAT(7X,"MAX’ 8X,’NP’,5X,'IP")
WRITE(7, (7110,4F10.4)" YMAX, NP
IF(NP.GT.CHANGE)THEN
M = MAXIT
IFMAX.LEM)GO TO 100
ENDIF
IFJPRINT.LE.0) THEN
IPRINT = IPRINT + 1
ENDIF

1000 CONTINUE

CLOSE(7)
CLOSE(8)
STOP
END

CCCCCCCCC************************************************CCCCCCCCC

SUBROUTINE MODEL

C  THIS SUBROUTINE IS TO CALCULATE T, THE TRUE TEMPERATURE

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION T(1500,5),Y(1500),SIG2(1500),B(5),Z(5),

+A(5),BS(5), VINV(S,5), EXTRA(20)
DIMENSION P(5,5),PS(5,5),SUM(5)

COMMON T,\N,Z,BS,LETA,PS,P,B,A,Y,SIG2,MODL,VINV, NP,EXTRA

COMMON/MOD/AA,TL,SUM
PI=4.0D+0*DATAN(1.0D+0)
QO = EXTRA(1)
TO = EXTRA(Q2)
TIMEH = EXTRA(3)
AL = EXTRA(4)
AL2 = AL¥AL
X = 0.0D+0
TIME = T(,1)
THCON = BS(1)
RHOCP = BS(2)*1.D6
TOL = 1D-8
XL = X/AL

DIMT = (ALPHA*(/LA2)
DIMT = (THCON*TIME)/(RHOCP*AL2)
DIMTH = (THCON*(TIME-TIMEH))/(RHOCP*AL2)
CONST = (QL/K)

CONST = (QO*AL)/THCON

SUMT = 0.0D+0
DO 20, M = 1, 1000

BETAM = (M - 0.5D+0)*PI
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BETA2M = BETAM*BETAM
FF1 = DEXP(-BETA2M*DIMT)
IF(TIME.LE.TIMEH) THEN
T1 = FF1
ELSE
FF2 = DEXP(-BETA2M*DIMTH)
T1 = FF1 - FF2
ENDIF
TINCR = TI*DCOS(BETAM*XL)*(1/BETA2M)
IF(M.NE.1) THEN
IF(ABS(TINCR/SUMT).LT.TOL) THEN
GOTO 15
ENDIF
ENDIF
SUMT = SUMT + TINCR
20 CONTINUE
15 IF(TIMELE.TIMEH) THEN
ETA = TO + CONST*(1.0D0 - XL - 2.0D0*SUMT)
ELSE
ETA = TO - 2.0D0*CONST*SUMT
ENDIF
GOTO 1000
1000 CONTINUE
RETURN
END

SUBROUTINE SENS
C  THIS SUBROUTINE IS FOR CALCULATING THE SENSITIVITY COEFFICIENTS

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION T(1500,5),Y(1500),SIG2(1500),B(5),
+Z(5),A(5),BS(5),VINV(5,5),EXTRA(20)
DIMENSION P(5,5),PS(5,5),SUM(5)

COMMON T,\N,Z,BS,LETA,PS,P,B,A,Y,SIG2 MODL,VINV NP, EXTRA
COMMON/MOD/AA,TL,SUM
PI=4.0D+0*DATAN(1.0D+0)

TZ=0.0

QO = EXTRA(1)

TO = EXTRA(2)

TIMEH = EXTRA(3)

AL = EXTRA4)

AL2 = AL*AL

X = 0.0D+0

TIME = T{,1)

THCON = BS(1)

RHOCP = BS(2)*1.D6

TOL = 1.D-8

XL = X/AL

C DIMT = (ALPHA*/LA2)
DIMT = (THCON*TIME)/(RHOCP*AL?2)
DIMTH = (THCON*(TIME-TIMEH))/(RHOCP*AL?2)
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C  CONST = (QL/K)
CONST = (QO*AL)/THCON
SUMK = 0.0D+0
SUMC = 0.0D+0
DO 20, M = 1, 1000
BETAM = M - 0.5D+0)*PI
BETA2M = BETAM*BETAM
FF1 = DEXP(-BETA2M*DIMT)
IF(TIME.LE.TIMEH) THEN
X1 = FF1*((1/BETA2M) + DIMT)
X2 = DIMT*FF1
ELSE
FF2 = DEXP(-BETA2M*DIMTH)
X1 = ((/BETA2M)+DIMT)*FF1 - ((1/BETA2M)+DIMTH)*FF2
X2 = DIMT*FF1 - DIMTH*FF2
ENDIF
X1INCR = X1*DCOS(BETAM*XL)
X2INCR = X2*DCOS(BETAM*XL)
IF(M.NE.1) THEN
IF(ABS(X1INCR/SUMK).LT.TOL.AND.ABS(X2INCR/SUMC).LT.TOL)THEN
GOTO 15
ENDIF
ENDIF
SUMK = SUMK + X1INCR
SUMC = SUMC + X2INCR
20 CONTINUE
15 IF(TIME.LE.TIMEH) THEN
Z(1) = -(CONST/THCON)*(1.0D0 - XL - 2.0D0*SUMK)
Z(2) = -2.0D0*(CONST/RHOCP)*SUMC*1.D6
ELSE
Z(1) = 2.0D0*(CONST/THCON)*SUMK
Z(2) = -2.0D0*(CONST/RHOCP)*SUMC*1.D6
ENDIF
GOTO 1000
1000 CONTINUE
RETURN
END

183



Appendix E

Input file for MODBOX.FOR

This file represents a sample input file to be used in MODBOX.FOR for the
estimation of the thermal properties. The first row of numbers represents the number of
data points, the number of parameters to be estimated, the number of independent
variables, the maximum number of iterations to be performed, the model number, and the
usual printouts, respectively. The second row represents the initial guesses for k. . and
C.p» Which are to be estimated. The first column is the index, the second column is the
values of the temperatures, the third is the standard deviation of the measurement errors,
and the fourth column is the independent variable, time. At the end of the columns, the
first row represents the number of extra parameters to be used in the program. These
parameters are then given in the next row, and represent the magnitude of the heat flux,

the initial temperature (and in this analysis, the constant temperature at the boundary), the

heating time, and the composite thickness, L, respectively.

10452121

05 15

1 .201515E+02 .100000E+01  .000000E+00
2 202875E+02 .100000E+01  .500000E+00
3 .204508E+02 .100000E+01  .100000E+01
4 205471E+02 .100000E+01  .150000E+01
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S 000~ W

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
4

207033E+02
207728E+02
209213E+02
.209658E+02
.210080E+02
211043E+02

201841E+02
.202061E+02
202114E+02
.202536E+02
.201520E+02
.202833E+02
202411E+02
.202583E+02
.201989E+02
202584E+02
201692E+02

.100000E+01
.100000E+01
.100000E+01
.100000E+01
.100000E+01
.100000E+01

.100000E+01
.100000E+01
.100000E+01
.100000E+01
.100000E+01
.100000E+01
.100000E+01
.100000E+01
.100000E+01
.100000E+01
.100000E+01

351.05 20.1515 180.036 0.0067818

.200000E+01
.250000E+01
.300000E+01
.350000E+01
400000E+01
450000E+01

.517086E+03
517586E+03
.518086E+03
.518586E+03
.519086E+03
.519586E+03
.520086E+03
.520586E+03
.521086E+03
.521586E+03
.522086E+03
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Appendix F

Finite Element (EAL) program

This is the finite element program (EAL) used to estimate the thermal properties.

EAL THERMAL ANALYSIS RESEARCH PROJECT, EXP. 3

Debbie A. Moncman

ook ok el ke sk sk ke sk e s e st e sk sk st sk e ook sk sk ok skl s sk ok s sk sk sl sk sk ol sl e ol e skt e ok ke sk ke sk e e skl o e sk e sfe e sk sk i sk ek e sk ok

This problem solves for the temperature distribution in a 2-D plate

with dimensions LXm x LYm. It then uses the Modified Box-Kanemasu
method to sequentially estimate the thermal properties of the material.
The properties of interest are the effective thermal conductivity and the
volumetric heat capacity. The left and right surfaces of the flat plate are
insulated, the bottom surface is maintained at a const. temp, and at

the top surface is a constant heat flux. The assumptions

used are: Transient, one-dimensional conduction, constant properties,

and no internal heat generation.

PP PPDPRPP PP DB P PP PP

Gk ook ok ok ROk R R R ROk oo ok o sk sk s
*XQT U1
*CM=200000

$**************************************************************************

$

$ Subroutine VARB - defines variables used in the program

$ NOTE: Variable names can only be four

$ letters long!
$**************************************************************************

$
*(29 VARB DEFI) VARB

$
$ Set RACM = 0 to use Fortran logic in all subroutines
*RACM =0
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$

$ Define geometry for 2-D plate

$

1LX=0.0479425  $Length of plate (m)
1ILY=0.0067818  $Height of plate (m)

$

$Define number of elements and nodes in each direction
$

INX=5 $Number of elements in X direction

INX1=NX+1 $Number of nodes in X direction
INX2=NX1+1 $ITUMP for meshing; start of second row
INY=5 $Number of elements in Y direction
INY1=NY+1 $Number of nodes in Y direction
INT=NX1*NY1  $Total number of nodes in mesh

INTOT=NT

IN1=1 $Beginning node for mat’l 1 (only 1 mat’l in this analysis)
IRN1=1. :

IRINC=1. $Node number increment

ICRIT = 1.E-6 $Criteria used to terminate estimation process

IT1=0 $Value used in determining if ests. are still changing signific.
T2 =0 $Value used in determining if ests. are still changing signific.

$

$ Define initial temperature, initial and final time, time step for
$ transient solution, total heating time, and heat flux value.

$

ITEMI=20.1515 $Initial temperature (0C)

ITIMI=0.0 $Initial (starting) time (sec)

I'TIMF=522.086 $Final (stopping) time (sec)

IDELT=0.5 $Time step for transient solution

ITIMH=180.036 $Time that heat flux is applied.

IDFLX = 1.E-8 $Small value added to timeh to define heat flux value
ITHDL = TIMH + DFLX $This is needed due to the discontinuity at timeh
IFLUX = 350.05 $Heat flux value

$

ICOU=TIMF-TIMI

1ICOU=COU/DELT $Number of time steps used in taking temp. measms.
INTS=IFIX(COU+0.0001) $Number of time steps must be an integer
INTS=NTS+1 $Total number of times from TIMI to TIMF

$

$ Enter initial parameter estimates

$

1A11=2.0 $Initial estimate for eff. thermal conductivity

1A2]=3.0 $Initial estimate for eff. volumetric heat capacity

ILOOP=0 $Used in sequential process

*RETURN

*VARB

$

$****************************************************************************

$
$ Subroutine NODE - defines the nodal positions
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$

$****************************************************************************

$

*(29 NODE GENE)NODE

*XQT TAB

START "NT" $ Define the total number of nodes
UPDATE=1

=
3

$ Give the location of the nodes (set up the mesh)

In the next statement, FORMAT=1 is used for rectangular coordinates;
N1 is the number to start the node locations at (in this case, 1);

0,0,0 are the coordinates of N1; LX,0,0 are the coordinates

for the bottom right corner of the mesh; NX1 is the number of nodes
in the x direction; 1 is the increment in the node number in the x
direction; and NY1 is the total number of nodes in the y direction.
For the next line, NX1 is jjump used in the y direction; 0, LY, 0 are
the coordinates of the upper left node; and LX, LY, 0 are the
coordinates of the upper right node.

P AL PP

FORMAT = 1: "N1", 0, 0,, 0.,"LX", 0., 0.,"NX1",1,"NY1"
"NX1°, 0., "LY", 0.,"LX", "LY", 0.
*RETURN
*NODE
$
$***************************************************************************
$
$ Subroutine ELEM - defines the element connectivity
$

$***************************************************************************

$

*(29 ELEM DEFDELMT

*XQT ELD

$

$ Define K41 elements

$ K41 signifies a conductive, 4 node element.

$
RESET NUTED=1

K41

GROUP = 1 $Group 1

NMAT=1 $Material 1

1J1=N1 $J1 is the number of the bottom LF node in an element
1J2=N1+1 $J2 is the number of the bottom RT node in an element
173=NX2+1 $73 is the number of the top RT node in an element
1J4=NX2 $J4 is the number of the top LF node in an element
"J1" 52" "J3" "14", 1, "NX" "NY"
$

$ The above line sets up the nodal positions of each element. 1 is the

$ node increment and NX and NY signify the number of elements in the x and
$ y directions, respectively.

$
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Define K21 elements
K21 is used to represent the heat flux
Note: since we're using this element to model the heat flux, the

thermal conductivities and specific heat must be zero (reason for Mat’l 2)
K21

GROUP =1

NMAT =2

1J1=NY*NX1+1

112=NY*NX1+2

"1t g2t 1, "NX", 1

$

*RETURN

*EILMT
$
$***************************************************************************
$
$ Subroutine TABL - Defines the thickness of the elements
g***************************************************************************
$

*(29 TABL GENE)TABL

*XQT AUS
TABLE(NI=1,NJ=1): K THIC: J=1: 1. $The thickness of K41 elements
TABLE(NI=1,NJ=1): K AREA: J=1: 1. $The area of K21 elements

$

*RETURN

*TABL

$
$***************************************************************************
$

$ Subroutine UPDA - Updates thermal property values
:***************************************************************************
$

*(29 TABL UPDA) UPDA

*XQT AUS

$

$ The following table gives the thermal conductivity in the x and y direc.

$ NI=9 indicates that nine variables can be entered to determine k (T, rho,
$ ¢, kxx, kyy, kzz, kxy, kzy, kzx) however, NJ=1 indicates that k is

$ temperature independent. I =4 5: correspond to kxx and kyy inputs (i.c.
$ the thermal conductivities in the x and y directions). NOTE: all non-zero

$ conductivities must be specified; there are no default values. To define
$ isotropic properties, identical values for kxx, kyy, and kzz must be entered.
$ Note that a value of 1.0E+6 was given for the density. This is used as a

$ scaling factor. Therefore, the estimate for the volumetric specific heat

$ must be multiplied by (1.0E+6).

$
TABLE(NI=9,NJ=1): COND PROP 1: 1 =2,3,4,5,6

OPERATION=XSUM

@ HH P
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J=1: 1'E+6,"A2"’IIA1ll,"Al","Al"

$

$ The next table sets up the 0 value properties for the K21 element

$

TABLE(NI=9,NJ=1): COND PROP 2: I1=13 4 5 6: J=1: 0.,0.,0.,0.

$

$ The next table defines the constant heat flux applied to the top surface.

$ Here, J is the number of elements. To specify a line heat flux (W/m) along
$ prescribed line flux divided by the element’s cross-sectional area.

$ A constant heat flux is applied for a timeh "TIMH", and is then removed.
$ (It is a step function)

TABLE(NI=1,NJ="NX"): SOUR K21 1: BLOCK 1: J=1, "NX": "FLUX"
BLOCK 2: J=1, "NX": "FLUX"
BLOCK 3: J=1, "NX": 0.0
BLOCK 4: J=1, "NX": 0.0
TABLE(NI=1,NJ=4): SOUR TIME; J=1: "TIMI"
J=2: "TIMH"
J=3: "THDL"
J=4: "TIMF"
$ The next table defines the nodes that have a prescribed temperature
$ (The bottom surface in this analysis). DDATA is a counter; Note: it must
$ be a REAL value (not an integer). Here, J is the number of nodes, NOT
$ the node number!
$
TABLE(NI=1,NJ="NX1"): TEMP NODE: DDATA="RINC":.J="N1","NX1": "RN1"
$
$ The next table defines the prescribed temperature at each of the nodes
$ specified in the previous table. In this analysis, all specified nodes
$ are at the same temperature "TEMI" since exps. were conducted at room temp
$
TABLE(NI=1NJ="NX1"): APPL TEMP: BLOCK 1: J=1,"NX1": "TEMI"
$
*RETURN
*UPDA
$

$***************************************************************************

$
$ Subroutine TDAT: Builds data files for experimental temperatures, initial
guesses, and sensitivity coefficients.
Data format:
TS AUSn3 1
Specify both n3 and n4 to identify the data tables
n3 = 1: measured temperatures
n3 = 2: initial temperatures
n3 = 3: derivative #n (the n-2th parameter)
n4 - x position where temperatures are measured
(only measured at one location (nd=1) for this case).

LD PP PP PB PP

190

s o ke ek sk e e e sk e s 3k 3 2 o s s ofe e sfe sfe s sk s ke ke sk o s e o ook ok sk sk sk e o e sk s she 3k ok e ke o sk e ok ook ofe o ok ok



*(29 BILD TS) XXXX

INCO2 = NCOU

$

$ Bring surface temperature data from TRAN TEMP multi-block data set using
$ XSUM and TRANSFER.

$
$***************************************************************************
$

INTN = NTOT-1 $Total number of nodes - 1.

INCP = NCOU+1 $=NTS, the total number of times from TIMI to TIMF

'DBS =0

*F("N4" EQ 2):!DBS=NCOU

*XQT AUS

DEFINE A =1 TRAN TEMP 1 1 2 "NCP"

¥F("N3" GT 1):*JUMP 1215

*IF("N4" EQ 1):TABLE(NI=1,NJ="NCP"): 4 TS AUS "N3" 1

*TF("N4" EQ 2):TABLE,U (NI=1,NJ="NCP"):4 TS AUS "N3" 1

TRANSFER(SOURCE=A ,DBASE="DBS",SBASE="NTN" ILIM=1,0PERATION=XSUM)
*LABEL 1215

*IF("N4" EQ 1):TABLE(NI=1,NJ="NCP"): 2 TS AUS "N3" 1

*[F("N4" EQ 2):TABLE,U (NI=1,NJ="NCP"): 2 TS AUS "N3" 1
TRANSFER(SOURCE=A ,DBASE="DBS",SBASE="NTN", ILIM=1,0PERATION=XSUM)
*RETURN

*FXXXX

$
$***************************************************************************
$

$ Subroutine INVH - Minimization Procedure

$
$***************************************************************************
$

*(29 INV HEAT) INVH

$

INCOU=NTS-1  $Total number of time steps

*XQT AUS

$

TABLE(NI=1,NJ=1045): 4 TS AUS 1 1: I=1

J=1:.201515E+02

J=2:202875E+02

J=3:.204508E+02

J=1043: 201989E+02
J=1044: 202584E+02
J=1045: 201692E+02

INCOU=NTS-1

IEPS=1.0E-6  $Convergence criteria used in (b-b0)/(b0-EPS)
INEPS=1 $Used to determine is No. of iterations exceeds NEMX.
INEMX=25 $Maximum number of iterations
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*XQT AUS
ITINI=DS 1,1,1 (4, TS AUS,1,1) $Defines the initial exp. temperature

TABLE (NI=4,NJ="NEMX"): 4 CONV HIST 1 1 $Table that stores sequential est.

$TABLE (NI=1,NJ="NCOU"): 4 RES HIST 1 1
tA1=A11 $Set Al and A2 back to the initial estimates.
1A2=A21

1AS1 = All $AS1 and AS2 are previous iteration, final estimate holders.

1AS2 = A2]

*LABEL 4000  $Begins the loop process

1A10=A1

1A20=A2

$

$Derivative calculations (Used to calculate the sensitivity coefficients
ITINI = DS 1,1,1 4,TS AUS,1,1)

IN4=1

IN3=2

INTAB=0

*DCALL(29 TRAN ANAL)

$The above call stmt. calculates temps. at the initial parameter estimates for
$the first iteration and at the final estimates of the previous iteration for
$the 2nd, 3rd, ... NEMX iterations.

1A1=1.001*A10 $Estimate at Al+dAl
IDA1=0.001¥A10 $Step used to numerically differentiate
IN3=3

*DCALL(29 TRAN ANAL)  $Calculates temps. at (A1+dAl)
1A1=A10 $Set Al back to initial estimate

$

1A2=1.001*A20 $Estimate at A2+dA2
IDA2=0.001*A20

IN3=4 .
*DCALL(29 TRAN ANAL)  $Calculates temps. at (A2+dA2)
1A2=A20 $Set A2 back to initial estimate

$

§ **¥* INVERSE HEAT TRANSFER BEGINS HERE ****

$

$ The parameters are initially estimated using the Gauss Method. These
$ estimated values are then modified using the Box-Kanemasu Method.
$

*XQT AUS

INLIB =2 $Identifies the source library

OUTLIB =2  $Identifies the destination library for output datasets
DEFINETM =4 TS AUS 11 $Experimental Temperatures (Y)

DEFINETO=2TS AUS 2 1 $Calc. temps. at initial parameter est. (ETA)

DEFINE TA1=2TS AUS 31 $Temps at Al + DA1

DEFINE TA2 =2 TS AUS 41 $Temps at A2 + D2A

$

IAINV = 1.0/DA1 $The following 4 statements are used in finding
1AIN2 = -1.0/DA1  $the sensitivity coefficients. (The derivative of

1A2NV = 1.0/DA2 $the temperature with respect to the parameter).
1A2N2 = -1.0/DA2
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$

D1 = SUM ("AINV" TA1, "AIN2" TO) $Delta Ti (TIRA1+DA1-TI@A1)
$ This statement sums the derivatives for the thermal conductivity

$Meaning: AINV * TA1 + AIN2 * TO

D2 = SUM ("A2NV" TA2, "A2N2" TO) $Delta Ti (TI@ A2+4DA2-TI@A2)
$This statement sums the derivatives for the volumetric heat capacity

$

N1 = SUM (TM,-1. TO) $Gives the matrix (Y - ETA); the Residuals

$ Build up the X matrix using vectors containing
$ the derivatives

$

SENS MATRIX = UNION(D1,D2) $Joins D1 and D2 into a new dataset
$ D1 and D2 must have the same block length.
$

DEFINE S=SENS MATRIX 11  $Defines the matrix X, i.e., the Sens. Coeffs.
ERR = XTY(S,N1) $Calculates XT (Y - ETA)

STS = XTY(S,S) : $Calculates XTX

STSI = RINV(STS) $Calculates the INVERSE of (XTX)

DA = RPROD(STSLERR) $Calculates INV(XTX)*(XT)*(Y - ETA)
$

NTN = XTY(N1,N1) $Calcs the Sum of Squares, (Y-ETA)T(Y-ETA)
TIT = XTY(TM,TM) $Calculates YTY

IDA1 =DS 1,1,1 (2, DA AUS, 1,1)

$DALI is the perturbation for the new estimate (thermal conductivity)

'DA2 =DS 2,1,1 (2, DA AUS, 1,})

$DA2 is the perturbation for the new estimate (volumetric heat capacity)

ISYS =DS 1,1,1 2, NIN AUS, 1, 1)  $The sum of squares value

$

$The following (A1 & A2) are the estimates obtained with only the Gauss Method
$

1A1 = DA1+A1 $New parameter estimate for the thermal conductivity
1A2 = DA2+A2 $New parameter estimate for the volumetric heat capacity
$

$ *** END BASIC LOOP-BEGIN BOX-KANEMASU MODIFICATION ***

This section of the program takes the estimated parameter values found
using the Gauss Method and modifies them using the Box-Kanemasu method.
This method may allow for convergence of the parameters when the Gauss
method does not. It uses the direction provided by the Gauss method but
modifies the step size by introducing a scalar interpolation factor (H).

The final parameter values are calculated using the Box-Kanemasu method.
For a detailed explanation of this method, see 'Parameter Estimation’ by

J. Beck and K. Amold (p. 362-367).

1AG1 = Al $Fixes the Gauss estimates

1AG2 = A2

1ASS1 = AS1 $Fixes the initial estimate for that iteration

1ASS2 = AS2

IALPH = 2.0 $Used in finding the parameter estimates

1AA =11 $Used to calculate H

*LABEL 620

P LB PP
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*IF("ALPH" LT 0.01):*JUMP 4001 $Alpha is too small, estms. aren’t converging.
!ALPH = ALPH/2.0 $Alpha starts out as 1.0.

IDIF1 = Al - ASS1 $Diff btw. Gauss & final est. of previous iteration.
IDIF2 = A2 - ASS2

1AS1 = ASS1 + ALPH*DIF1 $Est. using the modified step-size

1AS2 = ASS2 + ALPH*DIF2

IALPHA

DATR = RTRAN(DA) $Transpose (XTX)N-DXT(Y - ETA)

G = RPROD(MATR,ERR)  $Used in calc. H, it’s the slope of the Sum of Squares
$ vs. H. By defn,, it should always be a positive scalar
IGVAL =DS 1,1,1 (2, G AUS, 1, 1) $Gives the scalar value found for G

1Al = AS1

1A2 = AS2

IN3=5

INd =1

*DCALL(29 TRAN ANAL)

$The above call stmt. calculates the temp. at the estimates obtained using ALPH
*XQT AUS

INLIB = 2

OUTLIB =2

$ EXIT

DEFINE TOG =2 TS AUS 51 $Temperatures at the Gauss est. + Step Size(alph)
DEFINE TM =4 TS AUS 11  $Experimental temperatures

NSS = SUM(TM,-1. TOG) $New (Y-ETA) using TOG temperatures.
SYP = XTY(NSS,NSS) $New sum of squares

ISSYP =DS 1,1,1 (2, SYP AUS, 1, 1) $Gives the sum of squares value

$

*IF("SSYP" GT "SYS"):*JUMP 620

$

$ The above statement is a check to see if the sum of squares is decreasing

$ If it’s not, alpha is decreased by 1/2. This process continues until the

$ above if statement is no longer true or until alpha is < 0.01, in which

$ case the program is terminated.

$

ICHEK = SYS - ALPH*GVAL*(2.0 - (1/AA)) $This is a check used to determine H
'H = ALPH*AA $Initially set the step-size, H equal to alpha*AA.

$

$If SSYP > CHEK, H is given a new value; se¢ following IF stmt.

$

*IF("SSYP" GT "CHEK"):'H = (ALPH*ALPH*GVAL)/(SSYP-SYS+(2.0*ALPH*GVAL))
$

$Calculate the modified parameter values using the obtained step-size (H).

A1 = ASS1 + H*(AG1 - ASS1) $Parameter estimates obtained using B-K method.
1A2 = ASS2 + H*(AG2 - ASS2)

$

$Calculate the following ratios, if RAT1 and RAT?2 are < CRIT (0.0001), then

$the change in the estimated parameters is insignificant and the iterative

$process is terminated.

$

IRAT1 = (Al - ASS1)/(ASS1 + EPS)
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IRAT1 = ABS(RAT1)

IRAT2 = (A2 - ASS2)/(ASS2 + EPS)

IRAT2 = ABS(RAT2)

$

ILOOP=LOOP+1 $Next iteration

*XQT AUS

$

$ Updates the table of the sequential estimates
TABLE,U(TYPE=-2): 4 CONV HIST 1 1
I="LOOP": "A1","A2","AG1","AG2"

$

$Set this iterations final estimates equal to the initial estimates for
$the next iteration.

1AS1 = Al

1AS2 = A2

$

*IF("RAT1" LE "CRIT"):!IT1 =1
*IF("RAT2" LE "CRIT"):IIT2 = 1

UTER = IT1 + IT2 $Determines if the change in both ests. is insignf
*IF("ITER" EQ 2):*JUMP 4001 $If ests. no longer change, stop iterating.
INEPS=NEPS+1 $Goes to next iteration

*IF("NEPS" GE "NEMX"):*JUMP 4001

$If the parameters don’t converge before the max. No. of iters., end process
*XQT DCU

PRINT 2 TS AUS 21

PRINT2N1 AUS 11 $Prints out the residuals for each iteration.
PACK 1

ERASE 2

*JUMP 4000 $Est. haven’t converged yet, go to next iteration
*LLABEL 4001 $To end iteration process

*XQT DCU

PRINT 4 TS AUS 1

PRINT 4 CONV HIST 11

$ PRINT 1 TRAN TEMP 1 1

$ PRINT 1 TRAN TIME 1 1

$The above libraries are only printed for the final iteration. (4 TS AUS 1
$is the for each iteration; experimental temperatures).

*RETURN

* INVH

$

$***************************************************************************

$

$ Subroutine TRAN - Solves direct problem using TRTB processor

$
$***************************************************************************
$

*(29 TRAN ANAL)TRAN

*DCALL(29 NODE GENE) $Generate the nodes used in the mesh

*DCALL(29 TABL GENE) $Generate tables needed in analysis

*DCALL(29 TABL UPDA) $Update the thermal properties (estimates)
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¥*DCALL(29 ELEM DEFI) $Defines the elements (Cond.,Conv., Heat Source, etc

$

*XQT TGEO $Element geometry processor; it computes local coordinates

$ and performs element geometry checks. The user MUST

$ execute TGEO after each execution of ELD.

*XQT TRTB $Transient analysis processor - Implicit with C.N. code

RESET PTV=0.00001 T1="TIMI" T2="TIMF" DT= "DELT" PRINT=0 MXNDT=100000
TEMP="TEMI"

TSAVE="DELT"

$

*XQT AUS

INCOU=NTS-1

INBLO=1

¥DCALL (29 BILD TS)

$

*XQT DCU $Processor that performs an array of database utility

$ functions (see Manual, Section 12-1)

DISABLE 1 EKS B

*RETURN

*TRAN

$
$***************************************************************************
$

$ Main program

$
$***************************************************************************
$

*DCALL (29 VARB DEFI)

*DCALL (29 INV HEAT)

*XQT EXIT
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APPENDIX G

Uncertainty Due to Experimental Measurements

The uncertainty in the estimated thermal properties due to experimental

measurement errors can be found from

12
N

oR = E ESX,.] (G.1)
i=1 i

where 3R is the uncertainty in the thermal property being analyzed, 8X; is the uncertainty
in the experimental variable, and the partial derivative of R with respect to X; is the
sensitivity coefficient with respect to the measurement, X,. In the experiments conducted
in this investigation, error could be associated with the temperature (X;), voltage (X,), or
current (X;) measurements. Therefore, the uncertainty in the effective thermal

conductivity perpendicular to the fibers (k,.,) would be given by

12

akx-e akx-e akx-e
Ok, 5 = _E.TESXT + avﬂ’axv =1 T5X, (G2)

Using this equation, a 8k, .5 of £0.035 W/m°C was calculated. In Chapter 5, the mean
value for k, . was estimated as 0.518 + 0.028 W/m°C. This uncertainty of +0.028
W/m°C, associated with the 95% confidence region, is approximately 20% smaller than

Ok

X

op found from the measurement errors. This result implies that the actual error

associated with k, . may be larger than estimated.
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